JIANG Jianfeng, CHEN Sihua, YOU Lantao. Uplink rate enhancement algorithm for 5G network in intelligent mine[J]. Journal of Mine Automation, 2021, 47(12): 62-67. DOI: 10.13272/j.issn.1671-251x.2021080067
Citation: JIANG Jianfeng, CHEN Sihua, YOU Lantao. Uplink rate enhancement algorithm for 5G network in intelligent mine[J]. Journal of Mine Automation, 2021, 47(12): 62-67. DOI: 10.13272/j.issn.1671-251x.2021080067

Uplink rate enhancement algorithm for 5G network in intelligent mine

More Information
  • Received Date: August 23, 2021
  • Revised Date: December 06, 2021
  • The 5G application scenarios such as remote control, high-definition video, unmanned mine car and unmanned aerial vehicle in intelligent mine put forward new requirements for the uplink rate of wireless network. However, the current 5G network uplink rate is insufficient, which leads to the limitation of intelligent mine business. And the existing 5G network uplink rate enhancement algorithm has limited range to improve the uplink rate. In order to solve the above problems, this paper proposes an uplink rate enhancement algorithm for 5G network in intelligent mine. By using supplementary upload technology, the spectrum resource aggregation is realized by overlaying Sub-3 GHz low band on the high band of C-Band, and the uplink rate of the network is improved by frequency domain resource allocation and time domain resource scheduling. In the middle-near point area, when the base station performs uplink data scheduling, the user equipment uses the 3.5 GHz frequency band to send uplink data in the uplink time slot of the C-Band frequency band, and uses the 1.8/2.1 GHz frequency band to send uplink data in the downlink time slot of the C-Band frequency band. In the far point area, the 3.5 GHz frequency band uplink is limited, and the user equipment only uses the 1.8/2.1 GHz frequency band to send uplink data. The test results show that the algorithm improves the mine near-point area, middle-point area and far-point area uplink rate by 17%, 41% and 213% respectively, and the average network uplink rate is significantly improved.
  • [1]
    王国法,赵国瑞,胡亚辉.5G技术在煤矿智能化中的应用展望[J].煤炭学报,2020,45(1):16-23.

    WANG Guofa,ZHAO Guorui,HU Yahui.Application prospect of 5G technology in coal mine intelligence[J].Journal of China Coal Society,2020,45(1):16-23.
    [2]
    申雪,卜小平,余文科.基于5G技术的"智慧矿山"建设研究[J].中国电子科学研究院学报,2020,15(7):620-624.

    SHEN Xue,BO Xiaoping,YU Wenke.Study on intelligence mine construction based on 5G technology[J].Journal of China Academy of Electronics and Information Technology,2020,15(7):620-624.
    [3]
    孙继平.煤矿智能化与矿用5G和网络硬切片技术[J].工矿自动化,2021,47(8):1-6.

    SUN Jiping.Coal mine intelligence,mine 5G and network hard slicing technology[J].Industry and Mine Automation,2021,47(8):1-6.
    [4]
    孙继平,陈晖升.智慧矿山与5G和WiFi6[J].工矿自动化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng.Smart mine with 5G and WiFi6[J].Industry and Mine Automation,2019,45(10):1-4.
    [5]
    张立亚,杨维,李晋豫.矿用5G通信系统射频能量损耗模型[J].华中科技大学学报(自然科学版),2021,49(9):6-10.

    ZHANG Liya,YANG Wei,LI Jinyu.Radio frequency energy loss model of mine 5G communication system[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2021,49(9):6-10.
    [6]
    蒋建峰,孙金霞,尤澜涛,等.基于Massive MIMO及频谱叠加的5G SA网络上行优化方法[J/OL].无线电工程:1-7[2021-10-25]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=WXDG20211022000&uniplatform=NZKPT&v=bhUOPhLLv-tA8qc5tNnlCFvUw8eB0x6pOhVW4EXd8UoTPphboflIrKwO6eo9hR5m.

    JIANG Jianfeng,SUN Jinxia,YOU Lantao,et al. 5G SA network uplink optimization method based on Massive MIMO and spectrum superposition[J/OL].Radio Engineering:1-7[2021-10-25]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=WXDG20211022000&uniplatform=NZKPT&v=bhUOPhLLv-tA8qc5tNnlCFvUw8eB0x6pOhVW4EXd8UoTPphboflIrKwO6eo9hR5m.
    [7]
    王波.5G SA的网络架构和关键技术[J].移动通信,2020,44(1):24-32.

    WANG Bo.The network architecture and key technologies of 5G SA[J].Mobile Communications,2020,44(1):24-32.
    [8]
    胡煜华,王鑫炎,李贝.5G网络上行覆盖增强研究[J].电信科学,2021,37(7):134-141.

    HU Yuhua,WANG Xinyan,LI Bei.Research on uplink coverage enhancement of 5G network[J].Telecommunications Science,2021,37(7):134-141.
    [9]
    张文俊,林延.5G网络覆盖能力提升策略研究[J].电信快报,2021(9):17-20.

    ZHANG Wenjun,LIN Yan.Research on promotion strategy of network coverage capability based on 5G[J].Telecommunications Information,2021(9):17-20.
    [10]
    曹丽芳,江天明,邓伟,等.5G频段间协同技术[J].电信科学,2021,37(8):148-154.

    CAO Lifang,JIANG Tianming,DENG Wei,et al.5G inter-band cooperation technology[J].Telecommunications Science,2021,37(8):148-154.
    [11]
    耿志明.面向5G的上行分流聚合传输方案的设计与实现[D].北京:北京邮电大学,2018.

    GENG Zhiming.Design and implementaion of uplink offloading and aggregation for 5G[D].Beijing:Beijing University of Posts and Telecommunications,2018.
    [12]
    林高全,曹芳,林锦全.一种降低5G上行数据传输时延的方案[J].通信技术,2021,54(6):1412-1416.

    LIN Gaoquan,CAO Fang,LIN Jinquan.A method to reduce 5G uplink data transmission delay[J].Communications Technology,2021,54(6):1412-1416.
    [13]
    黄智瀛,白锡添,杜安静.5G SUL上行增强技术研究及应用[J].广东通信技术,2021,41(8):49-51.

    HUANG Zhiying,BAI Xitian,DU Anjing.Research and application of 5G SUL uplink enhancement technology[J].Guangdong Communication Technology,2021,41(8):49-51.
    [14]
    郑鸿麟.网络覆盖边缘5G NSA上行速率的优化与提升[J].通信技术,2020,53(11):2694-2698.

    ZHENG Honglin.Optimization and promotion of 5G NSA uplink rate at the edge of network coverage[J].Communications Technology,2020,53(11):2694-2698.
    [15]
    常诚.双超级上行提升5G上行速率[J].电子元器件与信息技术,2020,4(10):37-39.

    CHANG Cheng.Dual super uplink improves the uplink rate of 5G[J].Electronic Component and Information Technology,2020,4(10):37-39.
  • Related Articles

    [1]YAN Shouqing, DONG Kangning, ZHANG Lianrong. Research on fire early warning technology in complex coal seam working face advancing[J]. Journal of Mine Automation, 2024, 50(S1): 96-99.
    [2]JIN Bing, ZHANG Lang, LI Wei, ZHENG Yi, LIU Yanqing, ZHANG Yibin. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation, 2024, 50(10): 97-104, 119. DOI: 10.13272/j.issn.1671-251x.2024080090
    [3]LI Baolin, FENG Jiaqi, WANG Enyuan, SUN Xinyu, WANG Shuowei. Intelligent identification of electromagnetic radiation signals induced by coal rock fractures using machine learning[J]. Journal of Mine Automation, 2024, 50(9): 144-152. DOI: 10.13272/j.issn.1671-251x.2024070019
    [4]JIA Pengtao, LIN Kaiyi, GUO Fengjing. A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks[J]. Journal of Mine Automation, 2022, 48(4): 105-113. DOI: 10.13272/j.issn.1671-251x.2021090047
    [5]ZHANG Lang, ZHANG Yinghui, ZHANG Yibin, LI Zuo. Research on fault diagnosis method of ventilation network based on machine learning[J]. Journal of Mine Automation, 2022, 48(3): 91-98. DOI: 10.13272/j.issn.1671-251x.2021120093
    [6]HAO Yu, YE Zhengliang. Research on index gas and activation energy of coal spontaneous combustion under different methane atmosphere[J]. Journal of Mine Automation, 2019, 45(11): 65-69. DOI: 10.13272/j.issn.1671-251x.2019040104
    [7]GU Zhoujie, LIU Zhentang, LIU Haoxiong, QIAN Jifa, LIN Song, LI Xiaoliang. Experimental research on characteristics of coal spontaneous combustion and its influence on lower limits of gas explosion[J]. Journal of Mine Automation, 2019, 45(11): 59-64. DOI: 10.13272/j.issn.1671-251x.2019070039
    [8]SUN Liutao, DUAN Yujian, HUANG Junze. Optimization of index gases and division method of spontaneous combustion "three zones" in 10 coal seam of Qingdong Coal Mine[J]. Journal of Mine Automation, 2018, 44(11): 56-61. DOI: 10.13272/j.issn.1671—251x.2018070050
    [9]WU Fusheng. Experimental study on composite gas indexes optimization for coal spontaneous combustion predictio[J]. Journal of Mine Automation, 2018, 44(7): 61-65. DOI: 10.13272/j.issn.1671-251x.17341
    [10]LEI Ming, HOU Yuan-bi. Monitoring and Prediction System of Spontaneous Combustion of Coal Seam Based on Virtual Instrument[J]. Journal of Mine Automation, 2005, 31(3): 19-21.

Catalog

    Article Metrics

    Article views (112) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return