SHEN Binxue, ZHOU Hongfan, ZHU Lei, WU Yuyi, QIU Fengqi, WANG Guopu, GUO Lin, HUANG Jianbin. The technology of gob-side entry retaining supported by flexible formwork wall with roof cutting and pressure relief for composite roof in deep mine[J]. Journal of Mine Automation, 2021, 47(11): 101-106. DOI: 10.13272/j.issn.1671-251x.2021040072
Citation: SHEN Binxue, ZHOU Hongfan, ZHU Lei, WU Yuyi, QIU Fengqi, WANG Guopu, GUO Lin, HUANG Jianbin. The technology of gob-side entry retaining supported by flexible formwork wall with roof cutting and pressure relief for composite roof in deep mine[J]. Journal of Mine Automation, 2021, 47(11): 101-106. DOI: 10.13272/j.issn.1671-251x.2021040072

The technology of gob-side entry retaining supported by flexible formwork wall with roof cutting and pressure relief for composite roof in deep mine

More Information
  • Received Date: April 20, 2021
  • Revised Date: November 06, 2021
  • In Lianghuai area of China, due to the influence of the large buried depth of the mine and the complicated roof conditions, when gob-side entry is retained, the roof deformation of the gob-side entry retaining is large, the coal side is easily extruded and the floor heave is serious.In order to solve this problem, taking the 360804 fully mechanized working face of Xinji No.1 Mine as the research object, the technology of gob-side entry retaining supported by flexible formwork wall with roof cutting and pressure relief is proposed.The bilateral cumulative energy blasting technology is used in the advance working face to carry out pre-splitting of the roof of the gob-side entry retaining to reduce the roof stress of the gob-side entry retaining effectively.With the continuous mining of the working face, when the working face coal wall is lagged a certain distance, the flexible formwork wall made of concrete is used to support the roadway side in order to achieve strong support for the roof of the gob-side entry retaining.The field application results show that there are two obvious fractures at different heights of blasting hole, which indicates that the blasting roof cutting effect is good.The maximum separation of the shallow part of the roadway roof is 7 mm, the maximum separation of the deep part is 19 mm, and the roadway roof support is relatively intact.The roadway roof and floor deformation is 430 mm, the two sides deformation is 487 mm, the roadway surrounding rock deformation is within the allowable range, and the roadway retaining effect is good.
  • [1]
    陈金宇.沿空留巷围岩卸压支护协同控制技术研究[J].煤炭科学技术,2020,48(8):44-49.

    CHEN Jinyu.Research on collaborative control technology for surrounding rock pressure relief and support of gob-side entry[J].Coal Science and Technology,2020,48(8):44-49.
    [2]
    陈上元,赵菲,王洪建,等.深部切顶沿空成巷关键参数研究及工程应用[J].岩土力学,2019,40(1):332-342.

    CHEN Shangyuan,ZHAO Fei,WANG Hongjian,et al.Determination of key parameters of gob-side entry retaining by cutting roof and its application to a deep mine[J].Rock and Soil Mechanics,2019,40(1):332-342.
    [3]
    华心祝.我国沿空留巷支护技术发展现状及改进建议[J].煤炭科学技术,2006,34(12):78-81.

    HUA Xinzhu.Development status and improved proposals on gob-side entry retaining support technology in China[J].Coal Science and Technology,2006,34(12):78-81.
    [4]
    王小龙,董志勇.高瓦斯煤层切顶卸压无煤柱自成巷技术应用研究[J].工矿自动化,2019,45(7):97-101.

    WANG Xiaolong,DONG Zhiyong.Application research on technology of non-pillar gob-side entry retaining formed by roof cutting and pressure release in high gas coal seam[J].Industry and Mine Automation,2019,45(7):97-101.
    [5]
    郝晓飞,郝兵元,谢益盛,等.中厚煤层沿空留巷巷旁柔模混凝土充填体合理宽度研究及应用[J].矿业安全与环保,2019,46(5):60-65.

    HAO Xiaofei,HAO Bingyuan,XIE Yisheng,et al.Research and application of reasonable width of flexible-formwork concrete fillings beside gob-side entry retaining in medium-thickness coal seam[J].Mining Safety & Environmental Protection,2019,46(5):60-65.
    [6]
    马新根,何满潮,李先章,等.切顶卸压自动成巷覆岩变形机理及控制对策研究[J].中国矿业大学学报,2019,48(3):474-483.

    MA Xingen,HE Manchao,LI Xianzhang,et al.Deformation mechanism and control measures of overlying strata with gob-side entry retaining formed by roof cutting and pressure releasing[J].Journal of China University of Mining & Technology,2019,48(3):474-483.
    [7]
    梁华杰,张凤杰.石泉煤矿切顶卸压沿空留巷方案[J].工矿自动化,2019,45(5):104-108.

    LIANG Huajie,ZHANG Fengjie.Scheme of gob-side entry retaining by cutting roof to release pressure for Shiquan Coal Mine[J].Industry and Mine Automation,2019,45(5):104-108.
    [8]
    何满潮,陈上元,郭志飚,等.切顶卸压沿空留巷围岩结构控制及其工程应用[J].中国矿业大学学报,2017,46(5):959-969.

    HE Manchao,CHEN Shangyuan,GUO Zhibiao,et al.Control of surrounding rock structure for gob-side entry retaining by cutting roof to release pressure and its engineering application[J].Journal of China University of Mining & Technology,2017,46(5):959-969.
    [9]
    何满潮,马新根,牛福龙,等.中厚煤层复合顶板快速无煤柱自成巷适应性研究与应用[J].岩石力学与工程学报,2018,37(12):2641-2654.

    HE Manchao,MA Xingen,NIU Fulong,et al.Adaptability research and application of rapid gob-side entry retaining formed by roof cutting and pressure releasing with composite roof and medium thick coal seam[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(12):2641-2654.
    [10]
    杨晓杰,王二雨,张民,等.大埋深破碎顶板煤层切顶卸压成巷技术研究[J].煤炭科学技术,2017,45(9):86-91.

    YANG Xiaojie,WANG Eryu,ZHANG Min,et al.Research on technique of forming roadway by advanced roof cutting and pressure releasing in depth buried coal seam with broken roof[J].Coal Science and Technology,2017,45(9):86-91.
    [11]
    郑忠友,杨晓科,朱磊,等.南梁煤矿采留一体无掘巷开采技术研究[J].煤炭工程,2018,50(8):1-6.

    ZHENG Zhongyou,YANG Xiaoke,ZHU Lei,et al.Research on gob-side retaining and shearer cutting tunnel mining system in Nanliang Coal Mine[J].Coal Engineering,2018,50(8):1-6.
    [12]
    何东升,殷术明.中厚煤层柔模混凝土沿空留巷矿压规律与围岩控制技术[J].煤炭工程,2018,50(9):35-38.

    HE Dongsheng,YIN Shuming.Study on mine pressure law and surrounding rock control of gob-side entry retaining with flexible-formwork concrete in medium-thick coal seam[J].Coal Engineering,2018,50(9):35-38.
  • Related Articles

    [1]LIU Jing, WEI Zhiqiang, CAI Chunmeng, LIU Yang. Positioning method for roadheaders based on fusion of LiDAR and inertial navigation[J]. Journal of Mine Automation, 2025, 51(3): 78-85, 95. DOI: 10.13272/j.issn.1671-251x.2025010021
    [2]WANG Haoran, WANG Hongwei, LI Zhenglong, FU Xiang. Roadheader combined positioning method based on strapdown inertial navigation and differential odometer[J]. Journal of Mine Automation, 2022, 48(9): 148-156. DOI: 10.13272/j.issn.1671-251x.17993
    [3]ZHANG Yufei, MA Hongwei, MAO Qinghua, HUA Hongtao, SHI Jinlong. Coal mine mobile robot positioning method based on fusion of vision and inertial navigatio[J]. Journal of Mine Automation, 2021, 47(3): 46-52. DOI: 10.13272/j.issn.1671-251x.2020110049
    [4]GUO Liang, SONG Jiancheng, NING Zhenbing, WANG Mingyong, LIN Lingyan, HUANG Jianqi. Positioning algorithm of mine-used monorail crane locomotive based on strapdown inertial navigatio[J]. Journal of Mine Automation, 2021, 47(1): 49-54. DOI: 10.13272/j.issn.1671-251x.2020080015
    [5]ZHANG Xuhui, LIU Boxing, ZHANG Chao, YANG Wenjuan, ZHAO Jianxun. Roadheader positioning method combining total station and strapdown inertial navigation system[J]. Journal of Mine Automation, 2020, 46(9): 1-7. DOI: 10.13272/j.issn.1671-251x.17641
    [6]MA Yuan, FU Shichen, ZHANG Ziyue, WANG Dongjie. Research status of pose detection methods of boom-type roadheader[J]. Journal of Mine Automation, 2020, 46(8): 15-20. DOI: 10.13272/j.issn.1671-251x.2020030072
    [7]DU Jingyi, GUO Jinbao, ZHANG Bo. Inertial navigation and positioning system for underground driverless trai[J]. Journal of Mine Automation, 2018, 44(9): 5-9. DOI: 10.13272/j.issn.1671-251x.2018040022
    [8]ZHANG Shouxiang, LI Sen, SONG Lailiang. Positioning of coal mining equipments based on inertial navigation and odometer[J]. Journal of Mine Automation, 2018, 44(5): 52-57. DOI: 10.13272/j.issn.1671-251x.2018010042
    [9]TIAN Yuan. Present situation and development direction of navigation technology of boom-type roadheader[J]. Journal of Mine Automation, 2017, 43(8): 37-43. DOI: 10.13272/j.issn.1671-251x.2017.08.008
    [10]WANG Zhenghe. Trajectory generation algorithm of inertial navigation based on smart phone[J]. Journal of Mine Automation, 2015, 41(5): 87-90. DOI: 10.13272/j.issn.1671-251x.2015.05.021
  • Cited by

    Periodical cited type(14)

    1. 马长青,杨清源,种自强,尤天宸,马鹏飞,李先兴,宋晓杰,卢天壮. 基于GIS与大数据分析的矿压监测预警平台. 煤炭技术. 2024(01): 124-128 .
    2. 张丽芳. 基于智慧矿山的双重预防机制实践与应用. 能源与节能. 2024(04): 65-67 .
    3. 黄坤,江振鹏,杨晓宇,安宁. 煤矿GIS一张图快速构建平台研究. 工矿自动化. 2024(07): 40-46+114 . 本站查看
    4. 周成,张相炎,居里锴. 机械安全风险预警系统构建与应用. 工业安全与环保. 2023(08): 40-46 .
    5. 陈玲玲,张媛媛. 基于应急预警视角的企业内部控制课程体系化创新. 华北科技学院学报. 2023(04): 118-124 .
    6. 宋坤,刘俊峰. 煤矿综合信息管控平台研究. 工矿自动化. 2023(S2): 95-98 . 本站查看
    7. 张倩,王翀,杨泽,伏明. 煤矿智能安全管控系统研究与应用. 中国煤炭. 2023(12): 78-84 .
    8. 张宇驰,陈义,李鸿. 基于视频技术的煤矿在线应急预警系统的研究与应用. 煤炭技术. 2022(02): 189-193 .
    9. 冯春花,张明慧. 基于物联网的煤矿安全监管体系变革探讨. 煤矿安全. 2021(07): 261-264 .
    10. 格日勒,王刚,柳智鑫. 基于视频技术的煤矿在线应急预警系统研究. 能源与环保. 2021(09): 41-45 .
    11. 吕雪梅. 基于多Agent的财务风险预警信息辅助决策系统设计. 微型电脑应用. 2021(10): 150-153 .
    12. 李春贺. 基于智慧矿山的安全风险分级管控与事故隐患排查治理系统. 煤矿安全. 2019(05): 285-288 .
    13. 方权,侯金华,翁永春,李海涛,杨世强,杨晓东. 基于GA-BP算法的远距离高压输电线路风险预警系统. 西安工程大学学报. 2019(05): 531-537 .
    14. 陈汉章,王继生,吴浩. 大型煤炭企业总部集成监控系统设计. 工矿自动化. 2018(12): 89-93 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (142) PDF downloads (19) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return