DU Zhigang, CHU Nan, LUO Ke. Underground location service system design[J]. Journal of Mine Automation,2022,48(3):123-128, 134. DOI: 10.13272/j.issn.1671-251x.2021040070
Citation: DU Zhigang, CHU Nan, LUO Ke. Underground location service system design[J]. Journal of Mine Automation,2022,48(3):123-128, 134. DOI: 10.13272/j.issn.1671-251x.2021040070

Underground location service system design

More Information
  • Received Date: April 20, 2021
  • Revised Date: March 12, 2022
  • Available Online: March 04, 2022
  • The location service aims to provide accurate real-time position information of target objects, which is based on positioning. However, the current underground positioning system has some problems, such as low positioning precision, poor real-time performance, insufficient capacity, limited database carrying capacity, only supporting one-dimensional positioning and so on. In order to avoid the influence of underground positioning system on location service, an underground location service system is designed. The system adopts a Docker-based micro-service architecture, which overcomes the problems of development iteration and performance bottleneck of the traditional monolithic architecture and looses the coupling between businesses. The system adopts the simultaneous ranging method of multi-label and multi-anchor nodes, which improves the ranging efficiency and the capacity of the positioning system while ensuring the ranging accuracy. The system uses multi-source data fusion positioning algorithm to improve the discrimination accuracy of the direction of the sign card relative to the anchor base station. The system adopts the positioning algorithm based on Kalman filter and weighted LM method and the low-complexity characteristic extraction method to optimize the positioning results, reduce noise interference, remove redundant data and improve positioning precision. The system introduces the time series database for mixed data storage, and stores time series data such as historical track in InfluxDB to improve system data access performance. The system adopts the publish-subscribe mode for asynchronous message transmission, which increases the reusability and sharing of public information. The system adopts Bearer verification for the location service interface to protect system data security and underground sensitive data. The practical application results show that the system can provide high-precision real-time position information of various underground targets, and provide important data support for the working face limit monitoring system, human-machine approach protection device, auxiliary transportation system and automatic driving system.
  • [1]
    王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [2]
    李德毅,张天雷,黄立威. 位置服务:接地气的云计算[J]. 电子学报,2014,42(4):786-790. DOI: 10.3969/j.issn.0372-2112.2014.04.025

    LI Deyi,ZHANG Tianlei,HUANG Liwei. A down-to-earth cloud computing:location-based service[J]. Acta Electronica Sinica,2014,42(4):786-790. DOI: 10.3969/j.issn.0372-2112.2014.04.025
    [3]
    包建军. 智能矿山高精度位置服务系统研究现状与展望[J]. 智能矿山,2021(3):46-52.

    BAO Jianjun. Research status and prospect of intelligent mine high-precision location service system[J]. Journal of Intelligent Mine,2021(3):46-52.
    [4]
    荆诚,王爱军. 微服务在煤矿监控类软件开发框架中的应用[J]. 工矿自动化,2020,46(2):94-99.

    JING Cheng,WANG Aijun. Application of microservice in development framework of coal mine monitoring software series[J]. Industry and Mine Automation,2020,46(2):94-99.
    [5]
    曹宏宇,胡恒. 基于微服务架构的智能终端软件架构探讨[J]. 科技创新与应用,2019(20):17-19.

    CAO Hongyu,HU Heng. Discussion on the software architecture of intelligent terminal based on micro-service architecture[J]. Technology Innovation and Application,2019(20):17-19.
    [6]
    钟俊林. 基于微服务架构的自助微商城的研究与实现[D]. 北京: 北京邮电大学, 2019.

    ZHONG Junlin. Research and implementation of self-service wemall based on microservices architecture[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
    [7]
    霍振龙. 矿井定位技术现状和发展趋势[J]. 工矿自动化,2018,44(2):51-55.

    HUO Zhenlong. Status and development trend of mine positioning technology[J]. Industry and Mine Automation,2018,44(2):51-55.
    [8]
    MAO Guoqiang,FIDAN B,ANDERSON B D O. Wireless sensor network localization techniques[J]. Computer Networks,2007,51(10):2529-2553. DOI: 10.1016/j.comnet.2006.11.018
    [9]
    陈康,王军,包建军,等. 基于消息复用的TOF井下精确定位技术[J]. 工矿自动化,2019,45(2):1-5.

    CHEN Kang,WANG Jun,BAO Jianjun,et al. TOF underground accurate positioning technology based on message multiplexing[J]. Industry and Mine Automation,2019,45(2):1-5.
    [10]
    KIM H. Performance analysis of the SDS-TWR-MA algorithm[C]//International Conference on Wireless Communications & Mobile Computing: Connecting the World Wirelessly, Leipzig, 2009: 399-403.
    [11]
    包建军. 煤矿巷道多源数据融合定位算法研究[J]. 工矿自动化,2019,45(8):38-42.

    BAO Jianjun. Research on multi-source data fusion positioning algorithm for coal mine roadway[J]. Industry and Mine Automation,2019,45(8):38-42.
    [12]
    王伟. 基于卡尔曼滤波和加权LM法的井下精确定位算法[J]. 工矿自动化,2019,45(11):5-9.

    WANG Wei. Underground precise positioning algorithm based on Kalman filter and weighted LM algorithm[J]. Industry and Mine Automation,2019,45(11):5-9.
    [13]
    余修武. 矿井安全智能监测无线传感器网络关键技术研究[D]. 武汉: 武汉理工大学, 2013.

    YU Xiuwu. Study on key technologies of wireless sensor networks in mine underground safety intelligent monitoring[D]. Wuhan: Wuhan University of Technology, 2013.
    [14]
    杨婕. 时序数据库发展研究[J]. 广东通信技术,2020,40(3):46-48. DOI: 10.3969/j.issn.1006-6403.2020.03.011

    YANG Jie. Research on development of time series database[J]. Guangdong Communication Technology,2020,40(3):46-48. DOI: 10.3969/j.issn.1006-6403.2020.03.011
    [15]
    韩艺坤,李富年,陈志丹. 基于InfluxDB的桥梁监测系统设计与实现[J]. 现代电子技术,2020,43(16):21-25.

    HAN Yikun,LI Funian,CHEN Zhidan. Design and implementation of bridge monitoring system based on InfluxDB[J]. Modern Electronics Technique,2020,43(16):21-25.
    [16]
    徐化岩,初彦龙. 基于InfluxDB的工业时序数据库引擎设计[J]. 计算机应用与软件,2019,36(9):33-36. DOI: 10.3969/j.issn.1000-386x.2019.09.006

    XU Huayan,CHU Yanlong. Design of industrial time series database engine based on InfluxDB[J]. Computer Applications and Software,2019,36(9):33-36. DOI: 10.3969/j.issn.1000-386x.2019.09.006
    [17]
    吴龙波. 基于Oauth2.0构建空管云数据中心的资源认证授权机制[J]. 科技传播,2020,12(15):168-169. DOI: 10.3969/j.issn.1674-6708.2020.15.075

    WU Longbo. The resource authentication and authorization mechanism of air traffic control cloud data center is constructed based on Oauth2.0[J]. Public Communication of Science & Technology,2020,12(15):168-169. DOI: 10.3969/j.issn.1674-6708.2020.15.075
  • Related Articles

    [1]SUN Kang, LIU Qiang, QIU Liming, LI Zhenlei, WANG Chaojie, SUN Qian, LIU Hairui, WANG Litao. Study on resistivity-stress-damage coupling patterns and mechanisms in coal failure under loading[J]. Journal of Mine Automation, 2025, 51(2): 155-162. DOI: 10.13272/j.issn.1671-251x.2024090052
    [2]WANG Zhifeng, WANG Jiachen, LI Lianghui, AN Bochao. Study on the prediction of gangue content rate in fully mechanized caving face based on DeepLab v3+[J]. Journal of Mine Automation, 2024, 50(10): 90-96. DOI: 10.13272/j.issn.1671-251x.2024070001
    [3]GENG Yanbing, WANG Zhangguo. A fast detection method for slime water flocculation and sedimentation rate based on image grayscale recognition[J]. Journal of Mine Automation, 2023, 49(12): 87-93. DOI: 10.13272/j.issn.1671-251x.2023050083
    [4]YU Fei, ZHANG Tong, LIU Wenjie, TAN Hui, YANG Xin, YU Xiang. Study on failure characteristics of coal sample under different unloading stress paths[J]. Journal of Mine Automation, 2022, 48(4): 96-104. DOI: 10.13272/j.issn.1671-251x.2021090081
    [5]JIANG Jianfeng, CHEN Sihua, YOU Lantao. Uplink rate enhancement algorithm for 5G network in intelligent mine[J]. Journal of Mine Automation, 2021, 47(12): 62-67. DOI: 10.13272/j.issn.1671-251x.2021080067
    [6]ZHU Liu. Research of deformation of roadway surrounding rock under effect of high horizontal stress in Gaojiapu Coal Mine[J]. Journal of Mine Automation, 2017, 43(11): 58-62. DOI: 10.13272/j.issn.1671-251x.2017.11.012
    [7]MU Dengcong, MENG Lei, DING Enjie, ZHANG Shen, DENG Yuanfang. Design of distributed coal-rock stress monitoring system[J]. Journal of Mine Automation, 2015, 41(10): 1-4. DOI: 10.13272/j.issn.1671-251x.2015.10.001
    [8]GUO Yin-jing, WU Kai, ZHAO Yuan, LI Chun-qiu. Research of fast acquisition method for low bit rate spread spectrum signal of mine through-the-earth communicatio[J]. Journal of Mine Automation, 2013, 39(6): 32-35.
    [9]ZHAO Qing-tao, GAO Jin-hai, CHENG Bao-ju. Numerical Simulation Research of Stability of Surrounding Rock of Inclined Soft Rock Roadway under Effect of Different Horizontal Stresses[J]. Journal of Mine Automation, 2011, 37(5): 41-44.
    [10]TIAN Qian-yi, MA Hua-hong, CHEN Jian-hua, SHI Xin-ling. A Kind of Multi-rate Sampling Method Based on Self-adaption Fuzzy Modulator[J]. Journal of Mine Automation, 2005, 31(3): 7-9.
  • Cited by

    Periodical cited type(3)

    1. 刘光明. 组合封堵气囊治理回风隅角瓦斯技术. 陕西煤炭. 2024(07): 43-48 .
    2. 史默,樊亮,杨剑,张园,李苏虎,和递. 厚煤层综放工作面隅角快速封堵技术. 陕西煤炭. 2023(01): 83-87 .
    3. 李哲,任帅,王方田,翟景辉,毕寸光,刘利凯. 高瓦斯矿井采空区防灭火及工作面端头封堵技术. 矿业研究与开发. 2022(04): 108-111 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (195) PDF downloads (34) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return