ZHAO Jianwen, CHEN Jiali. One-mode component-based fault section location method for mine high-voltage power network[J]. Journal of Mine Automation, 2021, 47(10): 62-69. DOI: 10.13272/j.issn.1671-251x.2021040039
Citation: ZHAO Jianwen, CHEN Jiali. One-mode component-based fault section location method for mine high-voltage power network[J]. Journal of Mine Automation, 2021, 47(10): 62-69. DOI: 10.13272/j.issn.1671-251x.2021040039

One-mode component-based fault section location method for mine high-voltage power network

More Information
  • Published Date: October 19, 2021
  • After a single-phase grounding fault occurs in the mine high-voltage power network, it is important to identify the fault section quickly for the safe and stable operation of the mine power network. The existing research on fault section location in distribution networks rarely involves mine high-voltage power network, while the traditional steady-state method has a dead zone when it is used for neutral point grounding system via arc suppression coil. And the transient method needs to be used with phase selection device and has the disadvantage that the fault characteristic quantity decays with time. By analyzing the characteristics of the one-mode component of the current obtained by Clark transform under the single-phase grounding fault additional state of the mine high-voltage power network, it is concluded that the one-mode component of the current upstream of the fault point is significantly larger than that downstream of the fault point, and the one-mode component of the current is not affected by the fault phase and the arc suppression coil current. A location method of the fault section of the mine high-voltage power network based on the one-mode component without phase selection is proposed. The method uses Clark transform to obtain the current one-mode components of each monitoring point in the fault additional state of the mine high-voltage power network, and calculates the current one-mode component amplitude difference on both sides of each section. The fault path is determined according to the minimum current one-mode component amplitude difference at the fault path branch node, and then the fault section is determined according to the maximum current one-mode component amplitude difference on both sides of the fault section at the fault path. Simulation and experimental results show that the method can achieve accurate fault location when a single-phase grounding fault occurs in any phase of the mine high-voltage power network, and is not affected by the initial fault angle, fault grounding resistance, fault location and system running mode.
  • Cited by

    Periodical cited type(5)

    1. 邓丽君. 基于语音识别技术的在线语言翻译交互学习系统的设计与实现. 自动化与仪器仪表. 2023(06): 199-203 .
    2. 郁小强,田毅帅,韩磊,王忠军,李寿荣. 语音识别技术在配电网工程建设中的应用. 信息技术. 2023(08): 65-69+76 .
    3. 张炳凯,刘浩,郑雯欣,嵇淮,张洁豪,李挺,张秋菊. 基于语音控制的机器人下棋系统开发. 科学技术创新. 2022(25): 159-162 .
    4. 桂宇晖,刘婧,刘军,宋刚. 基于智慧工厂的语音交互设计研究. 包装工程. 2020(06): 26-31 .
    5. 覃中顺,赵四海,胡云兰,李雷,苏辉,杨波凯. 煤矿井下应急导航系统设计. 煤炭工程. 2020(07): 49-52 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (148) PDF downloads (13) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return