CHEN Fang, ZHANG Jinman, XU Liangji, et al. Similar simulation experiment of water loss and settlement in thick loose aquifer[J]. Industry and Mine Automation,2022,48(1):76-82. DOI: 10.13272/j.issn.1671-251x.2021030080
Citation: CHEN Fang, ZHANG Jinman, XU Liangji, et al. Similar simulation experiment of water loss and settlement in thick loose aquifer[J]. Industry and Mine Automation,2022,48(1):76-82. DOI: 10.13272/j.issn.1671-251x.2021030080

Similar simulation experiment of water loss and settlement in thick loose aquifer

More Information
  • Received Date: March 24, 2021
  • Revised Date: January 07, 2022
  • Available Online: January 18, 2022
  • Published Date: January 19, 2022
  • The in-depth research on the breaking and deformation law of overburden rock under the geological and mining conditions of thick loose aquifer are lacking at present. Taking 11111 working face of Pansidong Coal Mine in Huainan mining area as the engineering background, the similar material model is constructed, and the digital photogrammetry extraction displacement method is used to record the overburden rock breaking process and overburden rock deformation during the model roadway heading. The causes of water loss and settlement of aquifer are analyzed. The overburden rocks form two main longitudinal diversion fissure zones under the action of W-type shear stress arch. The further development of the diversion fissure zone causes water loss and consolidation of the aquifer, and the aquifer is further compacted under the action of gravity of the thick loose layer. With the intensification of the overburden rock breaking movement, О type shear stress arch is formed under the joint extrusion of bending zone and overburden rock, which compresses the thin space and leads to the large amount of surface subsidence. The damage of overburden rock under water loss condition is analyzed. After the roadway heading work of the working face is completed and the overburden rock reaches a steady state, the front caving angle is 57°, the rear caving angle is 62°, and the height of the diversion fissure zone is 63 m. Under the action of stress concentration, the overburden rock above the open-cut hole and the stop-mining line is broken to produce longitudinal fissure, and the overburden rock in the area of the collapse zone above the open-cut hole and the stop-mining line produces lateral separation fissure. The longitudinal fissures and lateral separation fissures intensify the hydraulic connection between overburden rock and the aquifer. The dynamic movement law of overburden rock under water loss state is given. With the advance of mining face, the overburden settlement of each observation line increases gradually, and the overburden settlement of the observation line close to the working face is the largest. The trend of the subsidence curves of the observation lines in the overburden rock above the working face is basically similar, and the jump of the subsidence curves is consistent. The trend of the subsidence curves of the observation lines above the aquifer is basically consistent, and the jump of the subsidence curves is synchronous. The jump of the subsidence curves of observation lines in the overburden rock above the working face and the one of the observation line above the aquifer are asynchronous, indicating that the aquifer plays an important role in the movement and deformation of the overburden rock.
  • [1]
    谢和平, 吴立新, 郑德志. 2025 年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960.

    XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949-1960.
    [2]
    高永格, 牛矗, 张强, 等. 厚松散层下采煤地表沉陷特征研究[J]. 煤炭科学技术,2019,47(6):192-198.

    GAO Yongge, NIU Chu, ZHANG Qiang, et al. Study on surface subsidence characteristics of coal mining under thick loose layer[J]. Coal Science and Technology,2019,47(6):192-198.
    [3]
    张海峰, 李文, 李少刚, 等. 浅埋深厚松散层综放工作面覆岩破坏监测技术[J]. 煤炭科学技术,2014,42(10):24-27.

    ZHANG Haifeng, LI Wen, LI Shaogang, et al. Research on technology of overlying strata failure monitoring in fully mechanized caving coal face with shallow and thick loose bed[J]. Coal Science and Technology,2014,42(10):24-27.
    [4]
    陈俊杰, 邹友峰, 郭文兵. 厚松散层下下沉系数与采动程度关系研究[J]. 采矿与安全工程学报,2012,29(2):250-254. DOI: 10.3969/j.issn.1673-3363.2012.02.018

    CHEN Junjie, ZOU Youfeng, GUO Wenbing. Study on the relationship between subsidence coefficient and mining degree under a thick alluvium stratum[J]. Journal of Mining & Safety Engineering,2012,29(2):250-254. DOI: 10.3969/j.issn.1673-3363.2012.02.018
    [5]
    李新岭, 郭文兵, 赵高博. 巨厚松散层土体压缩特性对开采沉陷影响研究[J]. 中国安全科学学报,2018,28(7):135-141.

    LI Xinling, GUO Wenbing, ZHAO Gaobo. Study on influence of compression characteristics of super-thick alluvium on mining subsidence[J]. China Safety Science Journal,2018,28(7):135-141.
    [6]
    许国胜, 许胜军, 李德海, 等. 赵固矿区厚松散层下开采地表移动特征实测研究[J]. 中国矿业, 2021, 30(5): 168-172.

    XU Guosheng, XU Shengjun, LI Dehai, et al. Field research on surface movement characteristic by coal mining under thick alluvium in Zhaogu mine area[J]China Mining Magazine, 2021, 30(5): 168-172.
    [7]
    许国胜, 李德海, 侯得峰, 等. 厚松散层下开采地表动态移动变形规律实测及预测研究[J]. 岩土力学,2016,37(7):2056-2062.

    XU Guosheng, LI Dehai, HOU Defeng, et al. Measurement and prediction of the transient surface movement and deformation induced by mining under thick alluvium[J]. Rock and Soil Mechanics,2016,37(7):2056-2062.
    [8]
    崔希民, 方志海, 左红飞, 等. 开采引起的含水层失水对地表下沉的影响[J]. 煤田地质与勘探,2000,28(5):47-48. DOI: 10.3969/j.issn.1001-1986.2000.05.015

    CUI Ximin, FANG Zhihai, ZUO Hongfei, et al. De-watering effect of aquifer to surface subsidence[J]. Coal Geology & Exploration,2000,28(5):47-48. DOI: 10.3969/j.issn.1001-1986.2000.05.015
    [9]
    崔希民, 邓喀中. 煤矿开采沉陷预计理论与方法研究评述[J]. 煤炭科学技术,2017,45(1):160-169.

    CUI Ximin, DENG Kazhong. Research review of predicting theory and method for coal mining subsidence[J]. Coal Science and Technology,2017,45(1):160-169.
    [10]
    李春意, 郭增长. 含水松散层固结对地表沉陷影响的数值分析[J]. 河南理工大学学报(自然科学版),2012,31(1):48-53.

    LI Chunyi, GUO Zengzhang. Numerical analysis of water-bearing alluvium consolidation influence on surface subsidence[J]. Journal of Henan Polytechnic University(Natural Science),2012,31(1):48-53.
    [11]
    张丁丁. 兖州矿区第四系厚松散层沉降特性研究[D]. 西安: 西安科技大学, 2015.

    ZHANG Dingding. Study on settlement characteristics of thick quaternary unconsolidated layer in Yanzhou mining area. [D]. Xi′an: Xi′an University of Science and Technology, 2015.
    [12]
    张劲满. 厚松散层含水层失水开采条件下覆岩运动及地表移动规律研究[D]. 淮南: 安徽理工大学, 2019.

    ZHANG Jinman. Study on overburden movement and surface movement under water loss mining in thick loose aquifer[D]. Huainan: Anhui University of Science and Technology, 2019.
    [13]
    杜锋, 白海波. 厚松散层薄基岩综放开采覆岩破断机理研究[J]. 煤炭学报,2012,37(7):1105-1110.

    DU Feng, BAI Haibo. Mechanism research of overlying strata activity with fully mechanized caving in thin bedrock with thick alluvium[J]. Journal of China Coal Society,2012,37(7):1105-1110.
    [14]
    梁庆华, 温兴林, 何刚, 等. 黏土体失水引起的地表下沉计算方法研究[J]. 采矿与安全工程学报,2007,24(1):105-108. DOI: 10.3969/j.issn.1673-3363.2007.01.023

    LIANG Qinghua, WEN Xinglin, HE Gang, et al. Study on calculation methods for surface subsidence caused by water loss of clay[J]. Journal of Mining & Safety Engineering,2007,24(1):105-108. DOI: 10.3969/j.issn.1673-3363.2007.01.023
    [15]
    赵春虎, 靳德武, 王皓, 等. 榆神矿区中深煤层开采覆岩损伤变形与含水层失水模型构建[J]. 煤炭学报,2019,44(7):2227-2235.

    ZHAO Chunhu, JIN Dewu, WANG Hao, et al. Construction and application of overburden damage and aquifer water loss model in medium-deep buried coal seam mining in Yushen mining area[J]. Journal of China Coal Society,2019,44(7):2227-2235.
    [16]
    徐良骥, 朱楠, 马荣振, 等. 厚松散承压含水层失水沉降模拟实验研究[J]. 采矿与安全工程学报,2015,32(5):821-826.

    XU Liangji, ZHU Nan, MA Rongzhen, et al. Water loss settlement simulation of thick unconsolidated confined aquifer layer[J]. Journal of Mining & Safety Engineering,2015,32(5):821-826.
    [17]
    周大伟. 煤矿开采沉陷中岩土体的协同机理及预测[D]. 徐州: 中国矿业大学, 2014.

    ZHOU Dawei. The synergy mechanism between rock mass and soil in mining subsidence and its prediction[D]. Xuzhou: China University of Mining and Technology, 2014.
  • Related Articles

    [1]CHENG Lei, LI Zhengjian, SHI Haorong, WANG Xin. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation, 2024, 50(1): 131-137. DOI: 10.13272/j.issn.1671-251x.2023090062
    [2]TIAN Jie, LI Yang, ZHANG Lei, LIU Zhen. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation, 2023, 49(7): 67-74. DOI: 10.13272/j.issn.1671-251x.2022100017
    [3]MO Shupei, TANG Jin, DU Yongwan, CHEN Ming. Underground adaptive positioning algorithm based on SAPSO-BP neural network[J]. Journal of Mine Automation, 2019, 45(7): 80-85. DOI: 10.13272/j.issn.1671-251x.2019010066
    [4]WEI Wenhui, GUO Ye. Boundary effects optimization of ZigBee wireless location based on BP neural network[J]. Journal of Mine Automation, 2014, 40(11): 65-70. DOI: 10.13272/j.issn.1671-251x.2014.11.016
    [5]LI Mao-dong, LIANG Yong-zhi, JIA Wen-pei, XIA Lu-yi. Application of BP neural network method based on genetic optimization in methane detectio[J]. Journal of Mine Automation, 2013, 39(2): 51-53.
    [6]FU Hua, LI Da-zhi. PID Self-tuning Control System Based on Neural Network[J]. Journal of Mine Automation, 2009, 35(7): 72-75.
    [7]ZHAO Yan-ming. Predicting Model of Gas Content Based on Improved BP Neural Network[J]. Journal of Mine Automation, 2009, 35(4): 10-13.
    [8]HAN Bing, FU Hua. Gas Monitoring System Based on Data Fusion with BP Neural Network[J]. Journal of Mine Automation, 2008, 34(4): 10-13.
    [9]GUO Xiu-cai, SHU Huai-li. Temperature Control System Based on PID Neural Network[J]. Journal of Mine Automation, 2008, 34(3): 30-32.
    [10]SHU Huai-lin , GUO Xiu-cai . PID Neural Network Control System of Multi-variable and Strong-coupled Time-varying System[J]. Journal of Mine Automation, 2003, 29(5): 16-18.
  • Cited by

    Periodical cited type(10)

    1. 尹波,彭雷祥,王正超,张磊,尹宜辰. 基于精细地质建模的开采沉陷预计算法优化与应用研究. 煤炭工程. 2025(01): 23-28 .
    2. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 .
    3. 韩晓刚,王江梅,朱万成,李荟,徐晓冬,秦涛,景树柱,韩国平. 多源数据融合的双阳煤矿精细化建模及虚拟现实平台搭建. 矿业研究与开发. 2024(03): 178-184 .
    4. 于建军,王建成,刘百祥. 基于地质物探数据的工作面透明地质模型构建研究与应用. 山东煤炭科技. 2024(04): 157-161+167+173 .
    5. 赵亦辉,周转会,杨青,孙永锋,吴振. 采煤机单刀截割曲线最优生成算法研究. 煤炭技术. 2024(06): 224-227 .
    6. 王海军,郑三龙,王相业,董敏涛,吴艳,马良,杨伟,朱玉英. 地质构造隐蔽致灾因素透明化勘查技术——以新疆屯宝煤矿为例. 煤炭科学技术. 2024(09): 173-188 .
    7. 李蔚林,赵嘉良,阮柳谭,李泽荃. 基于空间自回归插值方法的煤层厚度预测研究. 煤炭工程. 2024(S1): 112-119 .
    8. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 .
    9. 李森,李重重,刘清. 基于透明地质的综采工作面规划截割协同控制系统. 煤炭科学技术. 2023(04): 175-184 .
    10. 刘亚,王静宜. 煤层智能化开采设备状态远程监测系统设计. 自动化与仪器仪表. 2023(05): 332-336 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (108) PDF downloads (18) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return