WANG Anyi, ZHOU Xiaoming. Mine roadway field strength prediction based on improved convolutional neural network[J]. Journal of Mine Automation, 2021, 47(10): 49-53. DOI: 10.13272/j.issn.1671-251x.2021030073
Citation: WANG Anyi, ZHOU Xiaoming. Mine roadway field strength prediction based on improved convolutional neural network[J]. Journal of Mine Automation, 2021, 47(10): 49-53. DOI: 10.13272/j.issn.1671-251x.2021030073

Mine roadway field strength prediction based on improved convolutional neural network

More Information
  • Published Date: October 19, 2021
  • In order to solve the problems of the complex modeling process, high computational complexity, and low prediction accuracy of the existing field strength prediction models, a mine roadway field strength prediction model based on improved convolutional neural network(CNN) is proposed. By analyzing the influence factors of electromagnetic wave transmission in large-scale fading channels in mines, using antenna operating frequency, roadway cross-sectional dimensions, roadway wall roughness, roadway wall inclination, roadway wall relative permittivity and transceiver distance as model inputs, using the electromagnetic wave propagation path loss as model outputs, the model is able to predict the changes of the roadway field strength. The improved CNN adds batch normalization layer after each convolutional layer to replace the original pooling layer so as to avoid the loss of data characteristics due to down-sampling of the pooling layer, to keep the output of each convolutional layer similarly distributed, to improve the network generalization capacity and to speed up the network convergence. The simulation results show that compared with the field strength prediction models based on CNN, BP neural network and support vector machine, the model has high consistency between the predicted value and the actual value, has stronger robustness, and improves the accuracy of mine roadway field strength prediction effectively.
  • Related Articles

    [1]JIN Bing, ZHANG Lang, LI Wei, ZHENG Yi, LIU Yanqing, ZHANG Yibin. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation, 2024, 50(10): 97-104, 119. DOI: 10.13272/j.issn.1671-251x.2024080090
    [2]LI Tieniu, HU Binxin, LI Huakun, GENG Wencheng, HAO Pengcheng, JI Xubo, SUN Zengrong, ZHU Feng, ZHANG Hua, YANG Chengquan. Automatic picking method of microseismic first arrival time based on improved support vector machine[J]. Journal of Mine Automation, 2023, 49(3): 63-69. DOI: 10.13272/j.issn.1671-251x.2022050081
    [3]SHEN Shuce, SHI Yannan, SONG Jianfeng, REN Ze, WANG Yiying, WANG Hanqiu. Research on trajectory planning of drill rig manipulator based on improved particle swarm optimization[J]. Journal of Mine Automation, 2022, 48(3): 71-77, 85. DOI: 10.13272/j.issn.1671-251x.2021090049
    [4]LAN Shihao, HAN Tao, HUANG Yourui, XU Shanyong. Research on dynamic window algorithm of mine mobile robot based on membrane computing and particle swarm optimizatio[J]. Journal of Mine Automation, 2020, 46(11): 46-53. DOI: 10.13272/j.issn.1671 -251x.2020060062
    [5]FENG Shuo, XIE Tingchuan, KANG Jing, LI Jianliang. Path planning of mine search and rescue robot based on two-particle swarm optimization algorithm[J]. Journal of Mine Automation, 2020, 46(1): 65-71. DOI: 10.13272/j.issn.1671-251x.2019050092
    [6]YE Manyuan, HUANG Kaifeng. Power balance control strategy for staircase modulation based on improved particle swarm optimization algorithm[J]. Journal of Mine Automation, 2015, 41(9): 57-62. DOI: 10.13272/j.issn.1671-251x.2015.09.015
    [7]WANG Jian-jun, WANG Shi-ying, LEI Meng. Application of Particle Swarm Optimization Algorithm in Prediction of Coal Calorific Value[J]. Journal of Mine Automation, 2012, 38(5): 50-53.
    [8]AN Feng-shua, . Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm[J]. Journal of Mine Automation, 2010, 36(5): 54-57.
    [9]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
    [10]PENG Juan, CHENG Jian, HAN Fang-fang, QUE Sheng-li, SONG Wan-bao. Multi-target Optimization for Automatic Blending Coal System Based on PSO Algorithm[J]. Journal of Mine Automation, 2009, 35(10): 25-28.
  • Cited by

    Periodical cited type(13)

    1. 杨敬伟,陈亚峰,辛向军. 融合5G技术的矿井智能巡检机器人通信系统研发. 金属矿山. 2025(02): 161-166 .
    2. 王飞. 一种用于手机定位的标识卡关键技术. 煤矿安全. 2024(04): 220-225 .
    3. 廖志伟,张建明,郭林峰,丁震,贺晓峰,吴海文. 煤矿智能化建设新型生产管控模式研究. 煤炭经济研究. 2024(04): 27-32 .
    4. 刘占中,陈善成,李慧颖. 露天矿绿色智能矿山系统建设研究. 当代化工研究. 2023(02): 185-187 .
    5. 何勇,徐元涛. 5G通信技术在智能化煤矿的应用与研究. 能源与节能. 2023(03): 167-169+173 .
    6. 种磊. 5G技术在煤矿智能化建设的应用. 陕西煤炭. 2023(02): 184-187+204 .
    7. 蔡峰,王陈书略,黄韶杰. 煤矿智能矿山自动化开采技术与应用. 内蒙古煤炭经济. 2023(02): 130-132 .
    8. 廖志伟,刘洋,单永泉,贺海成. 煤矿井下掘进工作面提高单进水平方法及路径研究. 工矿自动化. 2023(S1): 92-98 . 本站查看
    9. 景杰. 5G通信技术在智能矿山中的应用. 数字技术与应用. 2022(03): 45-47 .
    10. 王雁峰. 永智煤矿运输系统智能化改造技术. 山西焦煤科技. 2022(07): 48-51 .
    11. 何勇军,易欣,王伟峰,康付如,陈炜乐,胡震. 煤矿井下电气火灾智能监控与灭火技术综述. 煤矿安全. 2022(09): 55-64 .
    12. 丁序海. 三道沟煤矿智能矿山建设实践与探索. 工矿自动化. 2022(S1): 6-10 . 本站查看
    13. 杨真,贺晓峰,兰云峰,肖华明,李维,李晓围,廖志伟. 布尔台煤矿智能化建设实践及采掘工作面关键技术探索. 中国煤炭. 2021(S1): 87-96 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (153) PDF downloads (35) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return