MA Jian, LI Zefang, ZHANG Desheng. Design of pipeline flow meter based on ultrasonic time difference method[J]. Journal of Mine Automation, 2021, 47(2): 93-97. DOI: 10.13272/j.issn.1671-251x.2021010022
Citation: MA Jian, LI Zefang, ZHANG Desheng. Design of pipeline flow meter based on ultrasonic time difference method[J]. Journal of Mine Automation, 2021, 47(2): 93-97. DOI: 10.13272/j.issn.1671-251x.2021010022

Design of pipeline flow meter based on ultrasonic time difference method

More Information
  • Published Date: February 19, 2021
  • The traditional gas flow meter used in gas pipelines in coal mines has problems like blocking failure. The flow meter based on ultrasonic time difference method has high measurement accuracy and good repeatability of measurement results. However, it is not suitable for gas extraction pipeline flow measurement. Moreover, it is difficult to design ultrasonic driver circuit and signal processing circuit separately. Based on the characteristics of coal mine gas extraction pipelines, a pipeline flow meter based on ultrasonic time difference method is designed. In the context of fixed propagation distance, the propagation time of ultrasonic waves emitted by ultrasonic transducer in the fluid is functionally related to the gas flow rate. The product of the flow rate and the cross-sectional area of the pipeline is the flow, hence the pipeline gas flow is indirectly obtained. The pipeline flow meter uses a low-power microprocessor STM32F103 as the core control element, and uses the automatic differential flight time measurement method inside the time-to-digital conversion chip MAX35104 to calculate the ultrasonic wave downstream and upstream flow propagation time. The gas flow rate, instantaneous flow and cumulative flow are calculated through the propagation time. The test results show that the maximum absolute error of the pipeline flow meter based on ultrasonic time difference method is 0.15 m/s and the maximum repeatability error is 0.17%. The performance meets the requirements of level 2 accuracy in JJG 1030—2007 Verification Regulations Ultrasonic Flowmeters and also meets the requirements of the ultrasonic wind speed sensor basic error requirements in MT 448—2008 Wind speed sensor for mine.
  • Related Articles

    [1]LIU Wanchun, LI Yonghui. Wireless networked control systems: an overview and recent developments[J]. Journal of Mine Automation, 2025, 51(1): 1-10. DOI: 10.13272/j.issn.1671-251x.18229
    [2]CHENG Huan, DENG Liying. Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway[J]. Journal of Mine Automation, 2024, 50(1): 115-121. DOI: 10.13272/j.issn.1671-251x.2023050057
    [3]SUN Tao, XIA Zhenxing, WANG Qianjin. Design of adaptive PID anti-saturation controller in switchover process of mine ventilator[J]. Journal of Mine Automation, 2019, 45(3): 90-94. DOI: 10.13272/j.issn.1671-251x.2018100013
    [4]CAO Xiaodong, YANG Shihai, JI Feng, YE Zongbin. Low loss control of explosion-proof frequency converter based on model predictive control[J]. Journal of Mine Automation, 2019, 45(2): 85-90. DOI: 10.13272/j.issn.1671-251x.2018100008
    [5]ZHANG Sihan, LIU Zhenjian, QIU Jinbo. Research on model predictive control model in application of shearer height-adjusting system[J]. Journal of Mine Automation, 2018, 44(5): 42-46. DOI: 10.13272/j.issn.1671-251x.2017120009
    [6]YU Jing, MO Xiuquan, XU Na. Research on predictive control for mine high-pressure three-level ANPC inverter[J]. Journal of Mine Automation, 2016, 42(10): 85-90. DOI: 10.13272/j.issn.1671-251x.2016.10.020
    [7]DONG Suling. Design of automatic switchover control system without blowing-out of mine main ventilator based on fuzzy control[J]. Journal of Mine Automation, 2015, 41(9): 39-43. DOI: 10.13272/j.issn.1671-251x.2015.09.011
    [8]DU Jingjing, HU Junchao, SHANGGUAN Xuanfeng. Multiple model predictive control of robot manipulator[J]. Journal of Mine Automation, 2014, 40(8): 57-62. DOI: 10.13272/j.issn.1671-251x.2014.08.015
    [9]MENG Lin-shan, MA Xiao-ping, LI Quan-bao. Improvement Scheme of Switchover Control System without Blowing-out of Mine Main Ventilator[J]. Journal of Mine Automation, 2012, 38(11): 9-10.
    [10]YU Li-min, MA Xiao-ping, REN Zhong-hua, YAN Shuan-zhu. Research of Switching Ventilator Control without Blowing-out of Main Ventilator of Mine and Its Implementatio[J]. Journal of Mine Automation, 2010, 36(9): 133-137.
  • Cited by

    Periodical cited type(16)

    1. 陈颖俊,霍瑜斌,施江峰,姚斌. 基于压电传感的水泵机组运行状态监测方法. 云南水力发电. 2025(01): 131-134 .
    2. 武晓莉. 矿用带式输送机运行状态监测系统应用. 机械管理开发. 2024(08): 249-251 .
    3. 梁堃,王驰. 基于分布式光纤声波传感器的带式输送机托辊故障监测方法. 激光与光电子学进展. 2023(09): 276-284 .
    4. 高波,袁媛,岳伟,张鑫增. 基于机器学习的托辊故障等级评价模型研究. 物流科技. 2023(13): 32-35 .
    5. 吴云雁. 矿用带式输送机故障监测与诊断系统设计. 陕西煤炭. 2023(04): 120-123+135 .
    6. 杨杰. 煤矿主运输长距离带式输送机托辊安装工艺研究. 煤矿机械. 2023(09): 101-105 .
    7. 邵斌,王磊,黄瀚. 煤矿井下带式输送机智能视频远程巡检系统设计. 煤矿机械. 2023(12): 198-200 .
    8. 李敬兆,孙杰臣,叶桐舟. 矿井带式输送机运行状态预测方法. 工矿自动化. 2022(02): 107-113 . 本站查看
    9. 宋超. 掘进巷道带式输送机常见故障及处理措施. 现代机械. 2022(01): 100-102 .
    10. 吴琦. 矿用皮带输送机托辊运行监测技术研究. 机械管理开发. 2022(01): 133-134+142 .
    11. 李超. 带式输送机自动巡检装置的设计及现场调试试验. 机械管理开发. 2022(04): 52-53+56 .
    12. 岳涛. 带式输送机托辊健康监测分析研究. 机械管理开发. 2022(07): 298-299+302 .
    13. 叶涛,王起,张弛. 带式输送机可视化监测系统研究与实现. 起重运输机械. 2022(19): 42-46 .
    14. 郝晓平. 带式输送机托辊故障检测技术研究. 机械管理开发. 2022(12): 121-122+125 .
    15. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 .
    16. 吕超. 带式输送机自动调心托辊的优化设计探析. 机械管理开发. 2021(12): 66-67+70 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (102) PDF downloads (15) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return