LIANG Zhanze. Driving system design of inspection robot for mine belt conveyor[J]. Journal of Mine Automation, 2021, 47(4): 108-112. DOI: 10.13272/j.issn.1671-251x.2021010003
Citation: LIANG Zhanze. Driving system design of inspection robot for mine belt conveyor[J]. Journal of Mine Automation, 2021, 47(4): 108-112. DOI: 10.13272/j.issn.1671-251x.2021010003

Driving system design of inspection robot for mine belt conveyor

More Information
  • The current research on mine belt conveyor inspection robots mainly focuses on the fault identification and diagnosis of belt conveyor inspection robots, while there are few researches the movement of inspection robots. There are large amount of equipment in roadways of coal mines, the working space is narrow and the terrain is complicated. Therefore, when the inspection robot moves, it will encounter extreme road conditions such as climbing slope and coal mud obstacles. In the context of the long inspection distance of the mine belt conveyor, the relatively single inspection target and fixed inspection route, the rail type driving system is adopted as the walking mode of the inspection robot. However, when the rail surface is covered by the coal mud, the driving wheels will be stuck. Moreover, when facing the rail with a large slope, the robot may skid. Therefore, a four-wheel support and two-wheel drive rail type driving system is designed. The inspection robot moves forward by the friction between the driving wheels and the rail, while the support wheels carrying the quality of the inspection robot and playing the role of walking assistance. The finite element simulation analysis is carried out on the main parts of the inspection robot driving system, which are the driving shaft and the swing arm. The ultimate stresses of the driving shaft and the swing arm are 83.2 MPa and 65.8 MPa respectively, which are much lower than the yield strength of the material, ensuring the performance reliability of the inspection robot. The climbing and coal mud obstacles crossing performance of the inspection robot driving system is tested. The results show that the inspection robot can still complete acceleration on the 25° slope rail, and runs smoothly during up and down slopes. There is no skidding and jamming when running on the coal mud obstacle rail.
  • Related Articles

    [1]Research on intelligent control of slime flotation based on WOA-GRU identification model and MPC controller[J]. Journal of Mine Automation.
    [2]GUO Aijun, WANG Miaoyun, MA Hongwei, ZHANG Xuhui, XUE Xusheng, DU Yuyang, ZHANG Chao. Research on obstacle avoidance control method of multi-rotor aircraft in coal mine[J]. Journal of Mine Automation, 2022, 48(12): 93-100. DOI: 10.13272/j.issn.1671-251x.2022110020
    [3]CAI Zhihua, ZHOU Dongxu, ZHAO Minghui. Design of coal mine inspection robot control system[J]. Journal of Mine Automation, 2022, 48(5): 112-117. DOI: 10.13272/j.issn.1671-251x.2021120034
    [4]CHEN Peng, WANG Chengyong, SHI Kaiyi, JI Yonghua, SUO Peidie, LIU Yuanli. Experimental research on coal slime flotation process based on orthogonal test desig[J]. Journal of Mine Automation, 2019, 45(2): 91-95. DOI: 10.13272/j.issn.1671-251x.2018050097
    [5]LYU Fuyan, JIA Xuankai, LIU Yayun, XIA Zhengmeng, HAO Xuedi, WU Miao. Experimental study on pressure impact and vibration of long-distance coal slime transportation pipeline[J]. Journal of Mine Automation, 2015, 41(5): 91-94. DOI: 10.13272/j.issn.1671-251x.2015.05.022
    [6]WANG Xin-zhao, HOU Yuan-bin, YANG Xue-cun, DANG Jiao. Research of pressure distribution model of coal slurry pipeline[J]. Journal of Mine Automation, 2013, 39(11): 61-65. DOI: 10.7526/j.issn.1671-251X.2013.11.017
    [7]XU Fei, YANG Hai-zhong. Research of Walking on Soft Soil Road of Compound Obstacle Crossing Robot with Master-slave Track[J]. Journal of Mine Automation, 2012, 38(11): 50-52.
    [8]WANG Jin-ya. Reformation Scheme of Coal Separation System of Coal Preparation Plant of Huoerxinhe[J]. Journal of Mine Automation, 2012, 38(7): 96-98.
    [9]HU Yu-song. Analysis of PLC Program of Electric Control System of Coal Mine Belt Conveyor[J]. Journal of Mine Automation, 2009, 35(11): 100-102.
    [10]Yang Xiao-ping, Wu Cui-ping, Xu De-ping, Feng Shao-gua. Study on Computer Control System of the Coal Slurry Flotatio[J]. Journal of Mine Automation, 2000, 26(4): 1-3.
  • Cited by

    Periodical cited type(24)

    1. 杜鹏程. 带式输送机巡检机器人控制系统设计. 山东煤炭科技. 2025(02): 151-155 .
    2. 孙晓霞,王劲翔,高澳. 井下带式输送机智能巡检机器人结构的设计. 中国工程机械学报. 2024(01): 54-60 .
    3. 关士远. 综采工作面隔爆巡检机器人控制技术研究. 煤矿机械. 2024(06): 41-44 .
    4. 贾盼盼,花洋,曾艳阳. 煤矿设备智能化管理系统研究. 大众科技. 2024(01): 19-23+38 .
    5. 关士远. 综采工作面防爆型巡检机器人的非线性控制研究. 煤矿机电. 2024(02): 1-7 .
    6. 关士远. 综放工作面隔爆型巡检机器人研究与应用. 中国煤炭. 2024(11): 86-91 .
    7. 葛世荣,胡而已,李允旺. 煤矿机器人技术新进展及新方向. 煤炭学报. 2023(01): 54-73 .
    8. 谭震,加保瑞,李孝利,苗鑫,任长忠. 矿井复杂危险环境侦测机器人研究应用. 能源与环保. 2023(01): 250-254 .
    9. 张维振. 矿用轨道式巡检机器人驱动系统设计. 矿山机械. 2023(05): 52-56 .
    10. 任伟. 基于SLAM和虚拟现实的综采工作面巡检系统. 工矿自动化. 2023(05): 59-65 . 本站查看
    11. 李卿. 带式输送机自动巡检装置在煤矿的应用研究. 机械管理开发. 2023(05): 269-271 .
    12. 吴晓霞,耿宝光. 复杂地形条件下矿用机器人的双闭环运动控制技术. 煤炭技术. 2023(08): 216-218 .
    13. 孟庆灵,武熙,赵佳伟,李珂. 圆截面管道轮式机器人驱动系统设计. 沈阳大学学报(自然科学版). 2023(04): 326-332 .
    14. 孙晓霞,王劲翔,孙敏杰,李琦. 井下带式输送机智能巡检机器人的设计. 工程机械. 2023(09): 92-101+11-12 .
    15. 陈晓鹏. 煤矿井下带式输送机运煤系统巡检机器人研究. 机械管理开发. 2022(02): 269-270 .
    16. 高志敏. 长距离带式输送机巡检系统研究. 煤炭科技. 2022(02): 62-66 .
    17. 路川川. 井下带式输送机巡检机器人系统设计应用. 机械研究与应用. 2022(03): 145-147 .
    18. 叶思琪,刘飘,罗金满,余凌,王湘女. 一种具有图像功能的电力巡检自站立移动机器人. 湖北电力. 2022(02): 120-126 .
    19. 贾俊霞,李一文,时慧喆. 具有分级热保护功能的巡检机器人电池充电电路设计. 电子器件. 2022(04): 821-825 .
    20. 李景健. 带式输送机巡检机器人系统研究. 机械管理开发. 2022(11): 251-252+257 .
    21. 任文清,刘孝军. 煤矿主运输系统智能巡检机器人研究与设计. 煤炭科学技术. 2022(S2): 372-378 .
    22. 吕培炎,阮学云,贾世林. 一种管状带式输送机巡检小车的传动机构设计. 现代制造技术与装备. 2021(07): 89-91 .
    23. 李保飞,文泽钰. 人工智能在煤矿机电设备中的应用. 中国新通信. 2021(14): 40-41 .
    24. 李涛,于志强,史占锋,王永振,张晓光. 选煤厂输煤系统轨道式巡检机器人. 煤炭科技. 2021(06): 104-108 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (178) PDF downloads (25) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return