ZHANG Zhen. Influence of hydraulic fracturing parameters of reused coal pillar roadway on pressure relief effect[J]. Journal of Mine Automation, 2020, 46(8): 58-63. DOI: 10.13272/j.issn.1671-251x.2020060081
Citation: ZHANG Zhen. Influence of hydraulic fracturing parameters of reused coal pillar roadway on pressure relief effect[J]. Journal of Mine Automation, 2020, 46(8): 58-63. DOI: 10.13272/j.issn.1671-251x.2020060081

Influence of hydraulic fracturing parameters of reused coal pillar roadway on pressure relief effect

More Information
  • Hydraulic fracturing pressure relief technology is used to control surrounding rock deformation of reused coal pillar roadway. In order to determine parameters of hydraulic fracturing, 43122 reused coal pillar roadway of Changping Coal Mine of Shanxi Jincheng Anthracite Mining Group Co., Ltd. was taken as research object, influence of fracturing times and fracturing positions on pressure relief effect were numerically simulated by use of plane discrete element UDEC software. The results show that the longer the fracturing segment length is, the less the corresponding fracturing times will be, and the weaker the effect of hydraulic fracturing on roof will be. Fracturing segment length should not exceed 4 m. Fracturing borehole will increase stress of coal pillar when it is located at coal pillar side of lower section working face, and reduce stress of coal pillar when it is located at goaf side of upper section working face and above the coal pillar, and pressure relief effect is the most obvious when fracturing borehole is located at goaf side of upper section working face. The hydraulic fracturing parameters determined by numerical simulation results were tested in field, the results show that after hydraulic fracturing is used for pressure relief, deformation stability period of surrounding rock of reused coal pillar roadway is 33.3% shorter than that of non-fractured roadway, and displacement of roof and floor and two side walls of reused coal pillar roadway is 63.5% and 45.5% lower than that of non-fractured roadway, which indicates deformation of surrounding rock of reused coal pillar roadway decreased significantly.
  • Related Articles

    [1]LIU Jing, WEI Zhiqiang, CAI Chunmeng, LIU Yang. Positioning method for roadheaders based on fusion of LiDAR and inertial navigation[J]. Journal of Mine Automation, 2025, 51(3): 78-85, 95. DOI: 10.13272/j.issn.1671-251x.2025010021
    [2]WANG Haoran, WANG Hongwei, LI Zhenglong, FU Xiang. Roadheader combined positioning method based on strapdown inertial navigation and differential odometer[J]. Journal of Mine Automation, 2022, 48(9): 148-156. DOI: 10.13272/j.issn.1671-251x.17993
    [3]ZHANG Yufei, MA Hongwei, MAO Qinghua, HUA Hongtao, SHI Jinlong. Coal mine mobile robot positioning method based on fusion of vision and inertial navigatio[J]. Journal of Mine Automation, 2021, 47(3): 46-52. DOI: 10.13272/j.issn.1671-251x.2020110049
    [4]GUO Liang, SONG Jiancheng, NING Zhenbing, WANG Mingyong, LIN Lingyan, HUANG Jianqi. Positioning algorithm of mine-used monorail crane locomotive based on strapdown inertial navigatio[J]. Journal of Mine Automation, 2021, 47(1): 49-54. DOI: 10.13272/j.issn.1671-251x.2020080015
    [5]ZHANG Xuhui, LIU Boxing, ZHANG Chao, YANG Wenjuan, ZHAO Jianxun. Roadheader positioning method combining total station and strapdown inertial navigation system[J]. Journal of Mine Automation, 2020, 46(9): 1-7. DOI: 10.13272/j.issn.1671-251x.17641
    [6]MA Yuan, FU Shichen, ZHANG Ziyue, WANG Dongjie. Research status of pose detection methods of boom-type roadheader[J]. Journal of Mine Automation, 2020, 46(8): 15-20. DOI: 10.13272/j.issn.1671-251x.2020030072
    [7]DU Jingyi, GUO Jinbao, ZHANG Bo. Inertial navigation and positioning system for underground driverless trai[J]. Journal of Mine Automation, 2018, 44(9): 5-9. DOI: 10.13272/j.issn.1671-251x.2018040022
    [8]ZHANG Shouxiang, LI Sen, SONG Lailiang. Positioning of coal mining equipments based on inertial navigation and odometer[J]. Journal of Mine Automation, 2018, 44(5): 52-57. DOI: 10.13272/j.issn.1671-251x.2018010042
    [9]TIAN Yuan. Present situation and development direction of navigation technology of boom-type roadheader[J]. Journal of Mine Automation, 2017, 43(8): 37-43. DOI: 10.13272/j.issn.1671-251x.2017.08.008
    [10]WANG Zhenghe. Trajectory generation algorithm of inertial navigation based on smart phone[J]. Journal of Mine Automation, 2015, 41(5): 87-90. DOI: 10.13272/j.issn.1671-251x.2015.05.021
  • Cited by

    Periodical cited type(14)

    1. 马长青,杨清源,种自强,尤天宸,马鹏飞,李先兴,宋晓杰,卢天壮. 基于GIS与大数据分析的矿压监测预警平台. 煤炭技术. 2024(01): 124-128 .
    2. 张丽芳. 基于智慧矿山的双重预防机制实践与应用. 能源与节能. 2024(04): 65-67 .
    3. 黄坤,江振鹏,杨晓宇,安宁. 煤矿GIS一张图快速构建平台研究. 工矿自动化. 2024(07): 40-46+114 . 本站查看
    4. 周成,张相炎,居里锴. 机械安全风险预警系统构建与应用. 工业安全与环保. 2023(08): 40-46 .
    5. 陈玲玲,张媛媛. 基于应急预警视角的企业内部控制课程体系化创新. 华北科技学院学报. 2023(04): 118-124 .
    6. 宋坤,刘俊峰. 煤矿综合信息管控平台研究. 工矿自动化. 2023(S2): 95-98 . 本站查看
    7. 张倩,王翀,杨泽,伏明. 煤矿智能安全管控系统研究与应用. 中国煤炭. 2023(12): 78-84 .
    8. 张宇驰,陈义,李鸿. 基于视频技术的煤矿在线应急预警系统的研究与应用. 煤炭技术. 2022(02): 189-193 .
    9. 冯春花,张明慧. 基于物联网的煤矿安全监管体系变革探讨. 煤矿安全. 2021(07): 261-264 .
    10. 格日勒,王刚,柳智鑫. 基于视频技术的煤矿在线应急预警系统研究. 能源与环保. 2021(09): 41-45 .
    11. 吕雪梅. 基于多Agent的财务风险预警信息辅助决策系统设计. 微型电脑应用. 2021(10): 150-153 .
    12. 李春贺. 基于智慧矿山的安全风险分级管控与事故隐患排查治理系统. 煤矿安全. 2019(05): 285-288 .
    13. 方权,侯金华,翁永春,李海涛,杨世强,杨晓东. 基于GA-BP算法的远距离高压输电线路风险预警系统. 西安工程大学学报. 2019(05): 531-537 .
    14. 陈汉章,王继生,吴浩. 大型煤炭企业总部集成监控系统设计. 工矿自动化. 2018(12): 89-93 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (83) PDF downloads (13) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return