ZHOU Libing. Design of collecting and computing platform used for predictive maintenance of coal mine electromechanical equipment[J]. Journal of Mine Automation, 2020, 46(8): 106-111. DOI: 10.13272/j.issn.1671-251x.2020040005
Citation: ZHOU Libing. Design of collecting and computing platform used for predictive maintenance of coal mine electromechanical equipment[J]. Journal of Mine Automation, 2020, 46(8): 106-111. DOI: 10.13272/j.issn.1671-251x.2020040005

Design of collecting and computing platform used for predictive maintenance of coal mine electromechanical equipment

More Information
  • Existing operation maintenance mode of coal mine electromechanical equipment is collecting data in underground and analyzing data by ground controller or cloud platform, which has poor real-time performance and flexibility, limited data collection amount, high cost, etc.While predictive maintenance solution scheme in general industry of edge computer plus data collection card is not applicable for operation maintenance of coal mine electromechanical equipment because of difficulty of mine-used intrinsically safe design, poor flexibility of field arrangement, too high cost, etc. For the above problems, a collecting and computing platform used for predictive maintenance of coal mine electromechanical equipment was designed, which was based on main controlling chip of STM32F4. The platform can parallel collect vibration, temperature, pressure and other data of coal mine electromechanical equipment with high speed and take out fast Fourier transform and envelope spectrum analysis real-timely, so as to obtain health status of the electromechanical equipment. The monitored data and diagnosis results can be displayed through man-machine interaction module on the spot, and be transferred to underground controller or cloud platform through Ethernet for large-scale data analysis. The test results show that the platform has measuring errors of less than 4% for vibration signals, and can correctly judge running status and faults of different components in the electromechanical equipment, which meets requirements of real-time calculation, analysis on the spot and flexible arrangement in coal mine field.
  • Related Articles

    [1]ZHANG Mei, XU Tao, SUN Huihuang, MENG Xiangyu. Fault diagnosis of mine hoist based on fuzzy fault tree and Bayesian network[J]. Journal of Mine Automation, 2020, 46(11): 1-5. DOI: 10.13272/j.issn.1671-251x.17562
    [2]DU Yuhui, PANG Xinyu, YANG Zhaojian. Fault diagnosis method of shear gearbox[J]. Journal of Mine Automation, 2017, 43(12): 94-99. DOI: 10.13272/j.issn.1671-251x.2017.12.019
    [3]YANG Qingxiang, XIANG Xiuhua, MENG Bin, WANG Kaizhong. A fault diagnosis method of coal mine belt conveyor[J]. Journal of Mine Automation, 2017, 43(12): 48-52. DOI: 10.13272/j.issn.1671-251x.2017.12.010
    [4]WANG Haoyu, CHEN Ying, MIAO Yanzi, CHEN Bingguang. A fault diagnosis system of mine main ventilator[J]. Journal of Mine Automation, 2017, 43(6): 69-71. DOI: 10.13272/j.issn.1671-251x.2017.06.016
    [5]QIAO Shuyun. Fault diagnosis for mine hoist bearing based on EMD method[J]. Journal of Mine Automation, 2016, 42(4): 51-54. DOI: 10.13272/j.issn.1671-251x.2016.04.012
    [6]PU Yasong, GUO Dewei, ZHANG Wenbi. Application of fault diagnosis technologies in coal mine machinery[J]. Journal of Mine Automation, 2015, 41(4): 36-39. DOI: 10.13272/j.issn.1671-251x.2015.04.010
    [7]PANG Weijian, MA Hailong, ZHU Yijun. Application of EMD filter to fault diagnosis of coal mine motor[J]. Journal of Mine Automation, 2015, 41(3): 93-95. DOI: 10.13272/j.issn.1671-251x.2015.03.023
    [8]HUA Wei, JI Xiaodong, DONG Shuochang, WU Miao. Research of vibration signal extraction and fault diagnosis of shearer cutting unit[J]. Journal of Mine Automation, 2015, 41(2): 94-97. DOI: 10.13272/j.issn.1671-251x.2015.02.026
    [9]XUE Guanghui, ZHANG Jun, JI Xiaodong, ZHAO Xinying. Research of vibration fault diagnosis of underground belt conveyor gear reducer[J]. Journal of Mine Automation, 2014, 40(6): 51-53. DOI: 10.13272/j.issn.1671-251x.2014.06.013
    [10]WANG Chang-quan , LING Wei-ye . Research on the Vibration and Temperature Monitoring and Control System in Fault Diagnosis[J]. Journal of Mine Automation, 2002, 28(5): 6-7.
  • Cited by

    Periodical cited type(10)

    1. 闫建飞. 煤矿机电设备故障预测的数据挖掘方法. 能源与节能. 2025(01): 275-278 .
    2. 赵长梅,段有艳,韩珂. 机电一体化设备的故障诊断方法与预测性维护技术应用. 造纸装备及材料. 2025(02): 13-15 .
    3. 曹现刚,段雍,王国法,赵江滨,任怀伟,赵福媛,杨鑫,张鑫媛,樊红卫,薛旭升,李曼. 煤矿设备全寿命周期健康管理与智能维护研究综述. 煤炭学报. 2025(01): 694-714 .
    4. 明凯迅. 故障检测诊断技术在智能化煤矿机电设备中的应用分析. 矿业装备. 2023(02): 52-54 .
    5. 赵东. 智能控制技术在煤矿机电设备中的应用. 科技资讯. 2023(15): 166-169 .
    6. 李烈熊. 基于ZigBee技术的机电设备故障智能监测系统设计. 信息与电脑(理论版). 2022(20): 140-142 .
    7. 孙巨峰. 基于智能矿山的煤矿机电设备管理创新. 当代化工研究. 2021(12): 131-132 .
    8. 刘媛媛. 煤矿机电设备智能化维护研究现状与发展趋势. 工矿自动化. 2021(07): 79-84 . 本站查看
    9. 任立民,薛晓,陈华敏. 基于物联网的煤矿井下机电设备安全监测系统设计. 煤炭技术. 2021(10): 166-168 .
    10. 高利锋. 基于智能矿山的煤矿机电技术管理创新. 内蒙古煤炭经济. 2021(22): 86-88 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (112) PDF downloads (21) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return