LIU Xiao. Control practice of thick and hard roof based on deep-hole pre-splitting blasting[J]. Journal of Mine Automation, 2019, 45(12): 1-6. DOI: 10.13272/j.issn.1671-251x.2019100029
Citation: LIU Xiao. Control practice of thick and hard roof based on deep-hole pre-splitting blasting[J]. Journal of Mine Automation, 2019, 45(12): 1-6. DOI: 10.13272/j.issn.1671-251x.2019100029

Control practice of thick and hard roof based on deep-hole pre-splitting blasting

More Information
  • In view of problem of strong mine pressure on working face with thick and hard roof, taking 11313 working face of Panbei Mine as engineering background, based on theoretical analysis of breakage characteristics of main roof, deep-hole pre-splitting blasting scheme of thick and hard main roof was formulated, and stress evolution law of surrounding rock under different thickness of deep-hole pre-splitting blasting and distribution of advancing abutment pressure under effective thickness of deep-hole pre-splitting blasting were studied by numerical simulation. The simulation results show that stress arch rotates to the side of transport roadway, stress arch height increases with the increase of blasting thickness and stress arch shape changed from spoon to ellipse. When thickness of main roof pre-splitting blasting is 12 m, influence range of advancing abutment pressure and distance between peak abutment pressure and coal wall of the working face increase by 8.5 m and 18.8 m respectively compared with that before the blasting, and advancing abutment pressure concentration coefficient decrease from 1.67 before blasting to 1.3 after blasting. The field monitoring results show that after the pre-splitting blasting of thick and hard main roof, the maximum load and average load of support in lower of working face decrease, dynamic load coefficient of support fluctuates significantly, and rib spalling of coal wall is effectively controlled.
  • Related Articles

    [1]LIU Wanchun, LI Yonghui. Wireless networked control systems: an overview and recent developments[J]. Journal of Mine Automation, 2025, 51(1): 1-10. DOI: 10.13272/j.issn.1671-251x.18229
    [2]CHENG Huan, DENG Liying. Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway[J]. Journal of Mine Automation, 2024, 50(1): 115-121. DOI: 10.13272/j.issn.1671-251x.2023050057
    [3]SUN Tao, XIA Zhenxing, WANG Qianjin. Design of adaptive PID anti-saturation controller in switchover process of mine ventilator[J]. Journal of Mine Automation, 2019, 45(3): 90-94. DOI: 10.13272/j.issn.1671-251x.2018100013
    [4]CAO Xiaodong, YANG Shihai, JI Feng, YE Zongbin. Low loss control of explosion-proof frequency converter based on model predictive control[J]. Journal of Mine Automation, 2019, 45(2): 85-90. DOI: 10.13272/j.issn.1671-251x.2018100008
    [5]ZHANG Sihan, LIU Zhenjian, QIU Jinbo. Research on model predictive control model in application of shearer height-adjusting system[J]. Journal of Mine Automation, 2018, 44(5): 42-46. DOI: 10.13272/j.issn.1671-251x.2017120009
    [6]YU Jing, MO Xiuquan, XU Na. Research on predictive control for mine high-pressure three-level ANPC inverter[J]. Journal of Mine Automation, 2016, 42(10): 85-90. DOI: 10.13272/j.issn.1671-251x.2016.10.020
    [7]DONG Suling. Design of automatic switchover control system without blowing-out of mine main ventilator based on fuzzy control[J]. Journal of Mine Automation, 2015, 41(9): 39-43. DOI: 10.13272/j.issn.1671-251x.2015.09.011
    [8]DU Jingjing, HU Junchao, SHANGGUAN Xuanfeng. Multiple model predictive control of robot manipulator[J]. Journal of Mine Automation, 2014, 40(8): 57-62. DOI: 10.13272/j.issn.1671-251x.2014.08.015
    [9]MENG Lin-shan, MA Xiao-ping, LI Quan-bao. Improvement Scheme of Switchover Control System without Blowing-out of Mine Main Ventilator[J]. Journal of Mine Automation, 2012, 38(11): 9-10.
    [10]YU Li-min, MA Xiao-ping, REN Zhong-hua, YAN Shuan-zhu. Research of Switching Ventilator Control without Blowing-out of Main Ventilator of Mine and Its Implementatio[J]. Journal of Mine Automation, 2010, 36(9): 133-137.
  • Cited by

    Periodical cited type(16)

    1. 陈颖俊,霍瑜斌,施江峰,姚斌. 基于压电传感的水泵机组运行状态监测方法. 云南水力发电. 2025(01): 131-134 .
    2. 武晓莉. 矿用带式输送机运行状态监测系统应用. 机械管理开发. 2024(08): 249-251 .
    3. 梁堃,王驰. 基于分布式光纤声波传感器的带式输送机托辊故障监测方法. 激光与光电子学进展. 2023(09): 276-284 .
    4. 高波,袁媛,岳伟,张鑫增. 基于机器学习的托辊故障等级评价模型研究. 物流科技. 2023(13): 32-35 .
    5. 吴云雁. 矿用带式输送机故障监测与诊断系统设计. 陕西煤炭. 2023(04): 120-123+135 .
    6. 杨杰. 煤矿主运输长距离带式输送机托辊安装工艺研究. 煤矿机械. 2023(09): 101-105 .
    7. 邵斌,王磊,黄瀚. 煤矿井下带式输送机智能视频远程巡检系统设计. 煤矿机械. 2023(12): 198-200 .
    8. 李敬兆,孙杰臣,叶桐舟. 矿井带式输送机运行状态预测方法. 工矿自动化. 2022(02): 107-113 . 本站查看
    9. 宋超. 掘进巷道带式输送机常见故障及处理措施. 现代机械. 2022(01): 100-102 .
    10. 吴琦. 矿用皮带输送机托辊运行监测技术研究. 机械管理开发. 2022(01): 133-134+142 .
    11. 李超. 带式输送机自动巡检装置的设计及现场调试试验. 机械管理开发. 2022(04): 52-53+56 .
    12. 岳涛. 带式输送机托辊健康监测分析研究. 机械管理开发. 2022(07): 298-299+302 .
    13. 叶涛,王起,张弛. 带式输送机可视化监测系统研究与实现. 起重运输机械. 2022(19): 42-46 .
    14. 郝晓平. 带式输送机托辊故障检测技术研究. 机械管理开发. 2022(12): 121-122+125 .
    15. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 .
    16. 吕超. 带式输送机自动调心托辊的优化设计探析. 机械管理开发. 2021(12): 66-67+70 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (78) PDF downloads (20) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return