CHEN Hongtao, LI Taixun. Optimization test of ultra-high pressure hydraulic slotting process parameters in Xuehu Coal Mine[J]. Journal of Mine Automation, 2020, 46(1): 90-94. DOI: 10.13272/j.issn.1671-251x.2019060067
Citation: CHEN Hongtao, LI Taixun. Optimization test of ultra-high pressure hydraulic slotting process parameters in Xuehu Coal Mine[J]. Journal of Mine Automation, 2020, 46(1): 90-94. DOI: 10.13272/j.issn.1671-251x.2019060067

Optimization test of ultra-high pressure hydraulic slotting process parameters in Xuehu Coal Mine

More Information
  • Due to high gas content and poor gas permeability in No.2 coal seam of Xuehu Coal Mine, coal seam gas is treated by borehole along the bed, which has problems such as poor gas drainage effect and long time to reach standard. For the above problems, an ultra-high pressure hydraulic slotting technology was applied to borehole gas drainage of the coal seam. Single-factor test was carried out to determine optimum process parameters of ultra-high pressure hydraulic slotting applicable to the No.2 coal seam of Xuehu Coal Mine: slotting pressure is 60-70 MPa, slotting time is 25 min, slotting speed is 80 r/min and slotting spacing is 2 m. After field application of ultra-high pressure hydraulic slotting technology with the optimized process parameters, average daily gas drainage volume fraction of slotting borehole is about 1.75 times that of ordinary borehole, average daily gas drainage pure volume is 3.25 times, time of gas drainage to reach standard is shortened by about 42% and residual gas content is small.
  • Related Articles

    [1]ZHANG Xinjie, WANG Jun, SUN Yongkang, XUE Jiangda, BIAN Dezhen. A study on the effective extraction layer of overburden fracture zone in goaf based on key layer theory[J]. Journal of Mine Automation, 2023, 49(12): 102-107, 113. DOI: 10.13272/j.issn.1671-251x.2023040072
    [2]LI Xiaoshen, LIU Ruipeng. Research and application of hydraulic slotting gas extraction technology in coal seams containing gangue[J]. Journal of Mine Automation, 2023, 49(4): 134-140. DOI: 10.13272/j.issn.1671-251x.2022100095
    [3]DU Jinlei, ZHANG Minbo, ZHANG Dianji, ZHANG Dangyu, ZHANG Zhen, CUI Li, WANG Zichao, LI Chunxin, ZHANG Fujian. Hydraulic cutting cooperative pressure relief and permeability enhancement technology in low permeability outburst coal seam[J]. Journal of Mine Automation, 2021, 47(7): 98-105. DOI: 10.13272/j.issn.1671-251x.17698
    [4]LIU Dianping, MA Wenwei. Research on determination method of effective drainage radius of gas drainage borehole[J]. Journal of Mine Automation, 2020, 46(11): 59-64. DOI: 10.13272/j.issn.1671 -251x.2020060058
    [5]GAO Yabin, HAN Peizhuang, GUO Xiaoya, XIANG Xin, WANG Fei. Research on influence characteristics of water jet impact on borehole gas drainage[J]. Journal of Mine Automation, 2020, 46(10): 19-25. DOI: 10.13272/j.issn.1671-251x.17651
    [6]MENG Xiangjun, CHEN Gonghua, RUAN Guoqiang, ZHANG Binbin, GUO Ying. Practice of gas drainage by high-level directional borehole in Qinglong Coal Mine[J]. Journal of Mine Automation, 2019, 45(12): 91-96. DOI: 10.13272/j.issn.1671-251x.2019060073
    [7]YANG Liping. Research on fine design method of pre-drainage zoning borehole on high gas working face[J]. Journal of Mine Automation, 2019, 45(7): 5-9. DOI: 10.13272/j.issn.1671-251x.2019010102
    [8]SANG Naiwen, YANG Shengqiang, SONG Yawei. Research on effective drainage radius and rational borehole spacing of parallel boreholes[J]. Journal of Mine Automation, 2019, 45(6): 58-62. DOI: 10.13272/j.issn.1671-251x.2019010048
    [9]JIAO Rongkun, ZHANG Xuebo, LI Yi. Research on negative pressure distribution laws of drainage borehole with different deformation and instability[J]. Journal of Mine Automation, 2019, 45(5): 40-45. DOI: 10.13272/j.issn.1671-251x.2018070064
    [10]ZHANG Bo, XIE Xionggang, XU Shiqing. Numerical simulation on gas drainage and borehole arrangement parameters of bedding borehole in a coal mine[J]. Journal of Mine Automation, 2018, 44(11): 49-56. DOI: 10.13272/j.issn.1671—251x.2018040049
  • Cited by

    Periodical cited type(11)

    1. 王宝贵. 水力压冲一体化增透抽采瓦斯技术. 工矿自动化. 2024(01): 35-41 . 本站查看
    2. 王安红. 低透气性煤层点式酸化压裂增透技术研究与应用. 能源与节能. 2024(07): 21-23+30 .
    3. 骆家宁,谢雄刚,杨家向,熊欣标,梁海彬,曹文梁. 煤巷条带超高压水力割缝增透试验. 湖南科技大学学报(自然科学版). 2023(01): 19-24 .
    4. 李晓绅,刘瑞鹏. 含夹矸煤层水力割缝瓦斯抽采技术研究及应用. 工矿自动化. 2023(04): 134-140 . 本站查看
    5. 肖家乐,徐家杰,薛鲲. 薛湖煤矿矿井充水主控因素与矿井涌水量预测研究. 能源与环保. 2022(08): 308-314 .
    6. 张晓伟. 斜沟煤矿超高压水力割缝卸压增透最优参数研究. 煤炭与化工. 2022(09): 105-109 .
    7. 李川,吕英华,梁文勖. 超高压水力割缝卸压增透最优参数研究. 煤炭工程. 2022(S1): 111-115 .
    8. 贾男. 低透气性煤层多组分酸化压裂增透技术研究. 矿业安全与环保. 2021(03): 27-32 .
    9. 赵红星,贾男. 低透气性煤层点式酸化压裂增透技术研究与应用. 中国安全生产科学技术. 2021(09): 66-71 .
    10. 李文福,王向阳,付航航,康甲甲,何伟,马涛,李刚. 低渗煤层超高压水射流不同割缝间距的力学特征. 陕西煤炭. 2021(06): 39-43 .
    11. 高亚斌,韩培壮,郭晓亚,向鑫,王飞. 钻孔水射流冲击对瓦斯抽采的影响特性研究. 工矿自动化. 2020(10): 19-25 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (114) PDF downloads (13) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return