YANG Yiqing, MA Hongwei, FAN Hongwei, ZHANG Xuhui, ZHANG Chao, HAN Lei. Design of online fault diagnosis and early warning system for coal mine rotating machinery[J]. Journal of Mine Automation, 2019, 45(10): 104-108. DOI: 10.13272/j.issn.1671-251x.2019010092
Citation: YANG Yiqing, MA Hongwei, FAN Hongwei, ZHANG Xuhui, ZHANG Chao, HAN Lei. Design of online fault diagnosis and early warning system for coal mine rotating machinery[J]. Journal of Mine Automation, 2019, 45(10): 104-108. DOI: 10.13272/j.issn.1671-251x.2019010092

Design of online fault diagnosis and early warning system for coal mine rotating machinery

More Information
  • In view of problems that existing coal mine machinery online monitoring and diagnosis technology did not realize online extraction of fault characteristics and automatic identification of fault types, an online fault diagnosis and early warning system for coal mine rotating machinery based on LabVIEW was designed. The system analyzes vibration signal by means of spectrum analysis, power spectrum analysis, envelope spectrum analysis and cepstrum analysis, and obtains characteristic parameters of each component in running process of the rotating machine, and compares it with characteristic parameters in fault type database to realize fault diagnosis. Two kinds of fault diagnosis modes are designed including fine diagnosis and rough diagnosis, the two modes are associated by interlocking. If structural parameters of the main components of rotating machine are known, the fine diagnosis mode can be selected,otherwise, the rough diagnosis mode can be selected. Performance of the system is verified by simulating rotor unbalance fault of rotating machine, and the results show that the system can accurately identify faults and issue prompts with simple operation and high reliability.
  • Related Articles

    [1]LIU Yongliang. Fault diagnosis method of coal mine machinery gearbox[J]. Journal of Mine Automation, 2020, 46(11): 12-16. DOI: 10.13272/j.issn.1671-251x.2020050029
    [2]ZHANG Zhe, TAO Yunchun, LIANG Rui, CHI Peng. A fault diagnosis method of belt conveyor[J]. Journal of Mine Automation, 2020, 46(4): 81-84. DOI: 10.13272/j.issn.1671-251x.2019120001
    [3]XU Qingqing, ZHAO Haifang, LI Shouju. A fault diagnosis method for coal mine machinery bearing[J]. Journal of Mine Automation, 2019, 45(10): 80-86. DOI: 10.13272/j.issn.1671-251x.2019020005
    [4]ZHANG Yongqiang, MA Xianmin, XU Meihui. Quantum neural network fault diagnosis technology for coal mine rotating electromechanical equipment[J]. Journal of Mine Automation, 2015, 41(4): 64-68. DOI: 10.13272/j.issn.1671-251x.2015.04.017
    [5]PU Yasong, GUO Dewei, ZHANG Wenbi. Application of fault diagnosis technologies in coal mine machinery[J]. Journal of Mine Automation, 2015, 41(4): 36-39. DOI: 10.13272/j.issn.1671-251x.2015.04.010
    [6]WANG Huizhong, XIAO Yingchun, ZHANG Ying, ZHU Hongyi. Study on fault diagnosis technologies of motor[J]. Journal of Mine Automation, 2015, 41(1): 40-44. DOI: 10.13272/j.issn.1671-251x.2015.01.011
    [7]LIU Pu, FU Sheng. Design of embedded online monitoring and fault diagnosis system of mine ventilator[J]. Journal of Mine Automation, 2013, 39(12): 103-106. DOI: 10.7526/j.issn.1671-251X.2013.12.026
    [8]WAN Zhi-qiang, SONG Jian-cheng, LEI Zhi-peng, WEN Min-min, LI Chuan-yang. Development of system of on-line monitoring, fault diagnosis and prewarning for insulation of mine-used dry-type transformer[J]. Journal of Mine Automation, 2013, 39(10): 1-5. DOI: 10.7526/j.issn.1671-251X.2013.10.001
    [9]LI Hong, TIAN Mu-qi. Application of Rough Set in Fault Diagnosis of Power Transformer[J]. Journal of Mine Automation, 2011, 37(3): 32-35.
    [10]MIN Yong~(, 2), GUO Yi-nan~. Application of Rough Set Theory in Fault Diagnosis of Roller Bearing[J]. Journal of Mine Automation, 2010, 36(5): 51-54.
  • Cited by

    Periodical cited type(14)

    1. 朱广贺,朱智强,袁逸萍. 基于改进CNN的旋转设备转子振动故障预测仿真. 计算机仿真. 2023(06): 533-537 .
    2. 衡星辰,林志达,张今革,曹小明,魏理豪. 基于自适应窗口的网络IT设备运行监控预警系统. 微型电脑应用. 2023(08): 103-105+110 .
    3. 马晶,白峥言,刘献礼,刘强,贾儒鸿,周强. 结合GA-BP与集成学习的钻削过程刀具状态实时监测. 机械科学与技术. 2023(10): 1678-1689 .
    4. 杨洋,张文博,左晨曦,王子轩. 基于“人-机-环-管”理论的数字化煤矿安全管理研究演化分析. 煤矿安全. 2021(02): 239-243+247 .
    5. 贾勇,陈晓飞,翟旭. 基于CRIO的数控机械在线监测诊断系统设计. 计算机测量与控制. 2021(06): 14-18 .
    6. 李旭,吴雪菲,田野,董博,党恩辉. 基于云平台的综采设备群远程故障诊断系统. 工矿自动化. 2021(07): 57-62 . 本站查看
    7. 孟瑞峰. 煤矿旋转机械在线故障诊断及预警系统设计研究. 中国设备工程. 2021(15): 165-166 .
    8. 郑磊. 基于时序数据的工作面设备故障预测研究. 工矿自动化. 2021(08): 90-95 . 本站查看
    9. 田小涛. 工作面双齿辊破碎机自动控制系统设计及应用. 煤矿机械. 2020(05): 152-155 .
    10. 沈颉,郭欣,何嘉. 基于改进希尔伯特黄的故障特征提取方法研究. 智能计算机与应用. 2020(03): 106-110 .
    11. 冯俊涛,戚厚军,谭鹏,王飞跃,杨正. 基于LabVIEW的振动信号分析与报警系统的设计. 机械研究与应用. 2020(03): 145-148+152 .
    12. 张传俊,张春芳,李艳华,朱炼. 基于人工智能的故障预警系统研究. 兰州文理学院学报(自然科学版). 2020(04): 52-56+114 .
    13. 张新永. 综采设备多元预警管理系统设计. 陕西煤炭. 2020(04): 199-202 .
    14. 鞠晨,张超,樊红卫,张旭辉,杨一晴,严杨. 基于小波包分解和PSO-BPNN的滚动轴承故障诊断. 工矿自动化. 2020(08): 70-74 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (65) PDF downloads (13) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return