ZHANG Xuhui, WANG Dongman, YANG Wenjua. Position detection method of hydraulic support based on vision measurement[J]. Journal of Mine Automation, 2019, 45(3): 56-60. DOI: 10.13272/j.issn.1671-251x.2018090039
Citation: ZHANG Xuhui, WANG Dongman, YANG Wenjua. Position detection method of hydraulic support based on vision measurement[J]. Journal of Mine Automation, 2019, 45(3): 56-60. DOI: 10.13272/j.issn.1671-251x.2018090039

Position detection method of hydraulic support based on vision measurement

More Information
  • In view of problems of high cost, poor accuracy and real-time performance in current position measurement methods of hydraulic support used in fully mechanized coal mining face, a position detection method of hydraulic support based on vision measurement was proposed. The infrared LED identification plate is set on the hydraulic support, the explosion-proof camera installed on the shearer is used for image acquisition, and the image is processed and calculated based on the visual algorithm of four coplanar feature points to obtain the position and pose of the hydraulic support base, and the straightness in multiple directions can be obtained according to the position and pose coordinates of the hydraulic support. The experimental results show that the method to measure the detection accuracy of the hydraulic support position is within 0.7°, and the straightness accuracy is less than 20 mm, which meets requirements of accuracy detection of the hydraulic support of fully mechanized coal mining face.
  • Related Articles

    [1]MA Zheng, YANG Dashan, ZHANG Tianxiang. Multi-personnel underground trajectory prediction method based on Social Transformer[J]. Journal of Mine Automation, 2024, 50(5): 67-74. DOI: 10.13272/j.issn.1671-251x.2023110084
    [2]WANG Shubin, WANG Xu, YAN Shiping, WANG Ke. Transformer based time series prediction method for mine internal caused fire[J]. Journal of Mine Automation, 2024, 50(3): 65-70, 91. DOI: 10.13272/j.issn.1671-251x.2023100084
    [3]LI Zexi. Ensemble learning mine pressure prediction method based on variable time series shift Transformer-LSTM[J]. Journal of Mine Automation, 2023, 49(7): 92-98. DOI: 10.13272/j.issn.1671-251x.18142
    [4]LI Yongqin, YU Zaichuan. Exploration and practice of intelligent transformation in Jinjie Coal Mine[J]. Journal of Mine Automation, 2022, 48(S1): 33-35.
    [5]ZHANG Guilin, WANG Yiying, LIU Jiangong, CHEN Longfei, LIU Wenzhuang. Mine inverter based on isolation and transformation of power electronic transformer[J]. Journal of Mine Automation, 2021, 47(10): 70-76. DOI: 10.13272/j.issn.1671-251x.2020110059
    [6]TAO Fengyuan, ZHANG Dong, DONG Xinsheng, WANG Shirong. Analysis of influence factors of polarization spectrum method on state detection of transformer oil-paper insulatio[J]. Journal of Mine Automation, 2014, 40(10): 33-36. DOI: 10.13272/j.issn.1671-251x.2014.10.010
    [7]LIU Yafeng, NIU Yuguang, ZHANG Jianyong. Signal processing method for dynamic weighing based on wavelet transform[J]. Journal of Mine Automation, 2014, 40(7): 13-16. DOI: 10.13272/j.issn.1671-251x.2014.07.004
    [8]LIU Jie, BAI Hong-feng. Application of Integrated Automation Technology for Transformer Substation in Mine[J]. Journal of Mine Automation, 2003, 29(6): 36-38.
    [9]WU Yan-hua, MENG Jiao-ru. The Operating Disturbances Analysis of the Coal Transformer[J]. Journal of Mine Automation, 2001, 27(3): 40-42.
    [10]ZOU Yi-wen, LI Jin-he. Application of Circuit Transformer Bank in Small-scale Heat Power Plant in Coal Mine and Its Protection Distributio[J]. Journal of Mine Automation, 2001, 27(1): 18-20.
  • Cited by

    Periodical cited type(16)

    1. 宋庆军,焦守悦,姜海燕,宋庆辉,郝文超. 基于改进EfficientNet的煤矸音频分类方法. 工矿自动化. 2025(01): 138-144 . 本站查看
    2. 燕建华. 周期性冲击波形匹配下选煤破碎机滚动轴承局部缺陷检测. 自动化与仪器仪表. 2025(02): 37-41 .
    3. 上官星驰,张晓良,刘朝,石会,王嘉宇. 基于改进特征提取算法及胶囊网络的设备故障诊断研究. 工矿自动化. 2024(S1): 146-150 . 本站查看
    4. 范忠明. 基于神经网络图像识别技术的放顶煤煤矸自动识别方法. 自动化技术与应用. 2024(10): 39-42 .
    5. 王志峰,王家臣,李良晖,安博超. 基于DeepLab v3+的综放工作面含矸率预测研究. 工矿自动化. 2024(10): 90-96 . 本站查看
    6. 李立宝,袁永,秦正寒,李波,闫政天,李勇. 图像特征与振动频谱多源融合驱动的煤矸识别技术研究. 工矿自动化. 2024(11): 43-51 . 本站查看
    7. 周正南,刘美,吴斌鑫,莫常春,高兴泉,张斐. 基于改进的CEEMDAN与关联维数的石化轴承故障特征提取. 机床与液压. 2023(05): 212-217 .
    8. 司垒,李嘉豪,邢峰,魏东,戴剑博,王忠宾. 不同煤矸混合物的微波传播特性试验研究. 煤炭科学技术. 2023(05): 219-231 .
    9. 石港,雷志鹏. 基于改进深度森林的采煤机拖拽电缆挤压力识别方法. 工矿自动化. 2023(10): 8-16+51 . 本站查看
    10. 史翔予,司垒,王忠宾,魏东,顾进恒. 基于改进双向峰-谷搜索算法的煤矸模型电磁波正演模拟. 工矿自动化. 2023(10): 87-95 . 本站查看
    11. 李春锋,马星河,刘广朋. 基于改进VMD的矿用电缆局放信号降噪方法. 能源与环保. 2023(12): 268-274 .
    12. 贺海涛,王佳豪,张海峰,荣耀,崔耀. 基于U-Net的放煤状态控制关键技术研究. 煤炭科学技术. 2022(S2): 237-243 .
    13. 高丰,朱少成,罗石. 基于改进的经验模态分解的后视镜驱动器故障诊断方法. 河南科技大学学报(自然科学版). 2021(06): 39-45+6-7 .
    14. 刘丹丹. 基于EMD的GNSS时间序列异常值探测算法. 地球物理学进展. 2021(05): 1865-1873 .
    15. 丁震,常博深. 面向煤矸识别的近红外反射光谱数据预处理方法. 工矿自动化. 2021(12): 93-97 . 本站查看
    16. 田志飞,洪盛勇. 火力发电厂煤流状态实时监测方法的研究及应用. 电力学报. 2021(06): 564-572 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (100) PDF downloads (14) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return