KANG Houqing. Research on filtering of electromagnetic measurement while drilling signal in underground coal mine[J]. Journal of Mine Automation, 2019, 45(1): 40-44. DOI: 10.13272/j.issn.1671-251x.2018040041
Citation: KANG Houqing. Research on filtering of electromagnetic measurement while drilling signal in underground coal mine[J]. Journal of Mine Automation, 2019, 45(1): 40-44. DOI: 10.13272/j.issn.1671-251x.2018040041

Research on filtering of electromagnetic measurement while drilling signal in underground coal mine

More Information
  • In view of problems of slow convergence speed and long computation time existed in electromagnetic wireless measurement while drilling (EM-MWD) signals extracted by adaptive filtering least mean square algorithm and recursive least squares algorithm, a stabilized fast transversal filters for recursive least squares (SFT-RLS) algorithm was proposed, which was used for adaptive filtering unsteady electrical interference and power frequency, as well as double frequency and triple frequency interference, and extracting weak EM-MWD signals in real time. Based on the RLS algorithm, the algorithm uses four parallel filter structures to reduce the operation time, and uses the weighted least squares error for feedback to improve the stability. The simulation results show that the SFT-RLS algorithm can achieve adaptive filtering and adaptive notch of the EM-MWD signals with a sampling rate of 1 kHz, the average running time of each iteration is less than 156.98 μs, so as to realize fast and stable convergence operation and real-time adaptive filtering of EM-MWD signals; the adaptive filtering of the SFT-RLS algorithm can suppress unsteady electrical interference with a signal to interference ratio of -115 dB; the adaptive notch of the SFT-RLS algorithm can filter power frequency and its interference of double frequency and triple frequency in real time, and effectively extract the EM-MWD time position pulse modulation signal with 6.25 Hz, and provide reliable data for correct decoding of EM-MWD signals.
  • Related Articles

    [1]ZHANG Xuhui, MA Bing, YANG Wenjuan, DONG Zheng, LI Yuyang. Research on denoising of uneven lighting images in coal mine underground[J]. Journal of Mine Automation, 2024, 50(2): 1-8. DOI: 10.13272/j.issn.1671-251x.2023110090
    [2]DOU Xueli, NIU Yonggang, YIN Peng, LI Jingsheng, LUAN Liangliang, LAN Xiang. Measurement and analysis of underground ultra wide band signal path loss[J]. Journal of Mine Automation, 2020, 46(10): 99-103. DOI: 10.13272/j.issn.1671 -251x.17667
    [3]WANG Wei. Underground precise positioning algorithm based on Kalman filter and weighted LM algorithm[J]. Journal of Mine Automation, 2019, 45(11): 5-9. DOI: 10.13272/j.issn.1671-251x.17500
    [4]ZHANG Shen, ZHANG Zhen. Design of underground voice transmission system by visible light[J]. Journal of Mine Automation, 2016, 42(8): 17-20. DOI: 10.13272/j.issn.1671-251x.2016.08.005
    [5]LIU Shulun, WANG Shuse. Underground personnel positioning system based on ultra wideband technology[J]. Journal of Mine Automation, 2014, 40(10): 81-83. DOI: 10.13272/j.issn.1671-251x.2014.10.022
    [6]DENG Jianzhi, CHENG Xiaohui. Transceiver of underground location system based on visible light color division duplex[J]. Journal of Mine Automation, 2014, 40(7): 1-4. DOI: 10.13272/j.issn.1671-251x.2014.07.001
    [7]CHEN Yan, LIU Zhiqiang. Design of underground lighting pre-warning system[J]. Journal of Mine Automation, 2014, 40(6): 18-20. DOI: 10.13272/j.issn.1671-251x.2014.06.005
    [8]SHANG Changchun, MA Hongwei, CHEN Yanbing. Image preprocessing method for underground variable lighting conditions[J]. Journal of Mine Automation, 2014, 40(3): 79-82. DOI: 10.13272/j.issn.1671-251x.2014.03.021
    [9]GAO Yun-guang. Design of Underground Lighting Protection System Based on PLC[J]. Journal of Mine Automation, 2010, 36(3): 25-28.
    [10]CHEN Li-la. Study on Full-function Traffic Light Based on EDA[J]. Journal of Mine Automation, 2000, 26(4): 20-21.
  • Cited by

    Periodical cited type(16)

    1. 付京. 煤矿安全监控多系统融合技术探究. 现代工业经济和信息化. 2023(01): 76-77+131 .
    2. 荆诚,朱沙沙. 煤矿井下移动端应用融合框架的设计和应用. 煤炭技术. 2023(07): 184-186 .
    3. 郭明明. 基于无线传感器网格的煤矿安全自动监控系统. 自动化与仪器仪表. 2022(02): 228-231 .
    4. 刘鸿燕,裴灵. 基于GPRS的地质钻探多参量融合监控系统设计. 自动化技术与应用. 2022(05): 75-79 .
    5. 罗辉,王晓南,栗浩. 一种基于深度视觉的井下充填智能监控方法. 电脑编程技巧与维护. 2022(10): 131-133 .
    6. 贺耀宜,高文,杨耀,荆诚,朱沙沙,陈醒. 智能矿山多元监控信息融合与联动研究. 工矿自动化. 2022(11): 11-19 . 本站查看
    7. 何云文,任文华. 井下多系统融合及应急联动的安全监控系统方案设计. 煤炭技术. 2021(01): 180-182 .
    8. 张明,何云文,付蓉. 井下融合及多系统联动技术在黄白茨煤矿应用与实践. 煤炭技术. 2021(02): 169-172 .
    9. 申乾. 红柳林煤矿安全监控系统升级改造及应用. 内蒙古煤炭经济. 2021(04): 79-81 .
    10. 胡宏泽,杜志刚,储楠,罗克. 基于智慧矿山平台的人员定位系统关键技术. 煤矿安全. 2021(11): 134-138 .
    11. 郭泰,颜铤. 基于物联网技术的矿井安全动态信息监测系统研究. 能源与环保. 2021(12): 228-233+239 .
    12. 李苗,邓玲霞,张丽丽. 多系统融合的煤矿安全生产智能监控与诊断系统的研究与应用. 河南科技. 2021(26): 74-76 .
    13. 郑学召,郭行,郭军,王宝元. 矿井广播系统及其在煤矿应急通信中的应用探讨. 工矿自动化. 2020(01): 32-37 . 本站查看
    14. 尹延华,杨林,付梅. 工业大数据技术助力煤矿安全生产管控初探. 煤炭加工与综合利用. 2019(06): 122-125+128 .
    15. 陈汉章,汪洋. 基于GIS的煤矿安全监控系统应急联动子系统的设计与实现. 矿业研究与开发. 2019(07): 121-125 .
    16. 贺耀宜,王海波. 基于物联网的可融合性煤矿监控系统研究. 工矿自动化. 2019(08): 13-18 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (65) PDF downloads (13) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return