CHEN Li, DU Wenhua, ZENG Zhiqiang, WANG Junyuan, WANG Riju. Automatic separation method of coal and gangue based on wavelet transform[J]. Journal of Mine Automation, 2018, 44(12): 60-64. DOI: 10.13272/j.issn.1671-251x.2018020047
Citation: CHEN Li, DU Wenhua, ZENG Zhiqiang, WANG Junyuan, WANG Riju. Automatic separation method of coal and gangue based on wavelet transform[J]. Journal of Mine Automation, 2018, 44(12): 60-64. DOI: 10.13272/j.issn.1671-251x.2018020047

Automatic separation method of coal and gangue based on wavelet transform

More Information
  • In view of the problems of low recognition accuracy, multiple extraction parameters and low real-time processing efficiency of existing coal gangue recognition and separation methods based on image processing, an automatic separation method of coal gangue based on wavelet transform was proposed. The method uses wavelet analysis to do noise reduction processing of coal and coal gangue image, and adopts constructing wavelet moment to extract and analyze features of coal and gangue, calculates the feature value, and find out the obvious differences of characteristic parameters between coal and gangue, the characteristic parameters can take as the basis of coal and gangue recognition. The experimental results show that the method improves the efficiency and of on-line identification and separation of coal and gangue with high accuracy.
  • Related Articles

    [1]SHANGGUAN Xingchi, ZHANG Xiaoliang, LIU Chao, SHI Hui, WANG Jiayu. Research on equipment fault diagnosis based on improved feature extraction algorithm and capsule network[J]. Journal of Mine Automation, 2024, 50(S1): 146-150.
    [2]CHEN Jianhua, MA Bao, WANG Meng. A method for simplifying surface point cloud data of coal mine roadways based on secondary feature extraction[J]. Journal of Mine Automation, 2023, 49(12): 114-120. DOI: 10.13272/j.issn.1671-251x.2023050029
    [3]ZHANG Meng, MIAO Changyun, MENG Deju. Research on a bearing early fault features extraction method[J]. Journal of Mine Automation, 2020, 46(4): 85-90. DOI: 10.13272/j.issn.1671-251x.2019090020
    [4]ZHANG Linfeng, TIAN Muqin, SONG Jiancheng, HE Ying, FENG Junling, YANG Xiang. Feature extraction of vibration signal of roadheader based on singular value decompositio[J]. Journal of Mine Automation, 2019, 45(1): 28-34. DOI: 10.13272/j.issn.1671-251x.2018070035
    [5]GUAN Zenglun, GU Jun, ZHAO Guangyuan. Underground video stitching algorithm based on improved speeded up robust features[J]. Journal of Mine Automation, 2018, 44(11): 69-74. DOI: 10.13272/j.issn.1671—251x.17342
    [6]MI Qiang, XU Yan, LIU Bin, XU Yunjie. Extraction method of texture feature of images of coal and gangue[J]. Journal of Mine Automation, 2017, 43(5): 26-30. DOI: 10.13272/j.issn.1671-251x.2017.05.007
    [7]SUN Jiping, YANG Kun. A coal-rock image feature extraction and recognition method[J]. Journal of Mine Automation, 2017, 43(5): 1-5. DOI: 10.13272/j.issn.1671-251x.2017.05.001
    [8]TAN Chunchao, YANG Jieming. Research on extraction of image gray information and texture features of coal and gangue image[J]. Journal of Mine Automation, 2017, 43(4): 27-31. DOI: 10.13272/j.issn.1671-251x.2017.04.007
    [9]HUANG Yu, ZHANG Yingjun, PAN Lihu. Otherness feature extraction method for underground image based on Shearlet transform[J]. Journal of Mine Automation, 2016, 42(3): 64-68. DOI: 10.13272/j.issn.1671-251x.2016.03.015
    [10]WU Yunxia, ZHANG Haopeng, DU Dongbi. Feature extraction method for human ear image and its application in miner identificatio[J]. Journal of Mine Automation, 2015, 41(11): 30-34. DOI: 10.13272/j.issn.1671-251x.2015.11.008
  • Cited by

    Periodical cited type(18)

    1. 李富强. 基于深度卷积神经网络与多源信号的煤岩识别研究. 煤炭技术. 2025(03): 233-238 .
    2. 高如新,杜亚博,常嘉浩. 基于改进YOLOX-S的轻量化煤矸石检测方法研究. 河南理工大学学报(自然科学版). 2024(04): 133-140 .
    3. 陈晓杰,王亮,赵美玲,刘光伟,涂俊雄. 基于ECA-YOLOv5s的煤矿带式输送机异物检测网络模型. 采矿技术. 2024(04): 316-324 .
    4. 陈世涛,张敏,栗超. 基于YOLOv5的带式输送机煤堆异物检测. 洁净煤技术. 2024(S2): 12-18 .
    5. 涂灿. VCS智能干选机的试验研究. 煤炭加工与综合利用. 2023(06): 37-41 .
    6. 高如新,常嘉浩,杜亚博,刘群坡. 基于改进YOLOv5s的煤矸石目标检测算法. 电子测量技术. 2023(13): 95-101 .
    7. 汪岩,李自强. 基于AI图像处理的煤矸石特征提取及分类方法. 煤炭技术. 2023(11): 231-233 .
    8. 曹现刚,刘思颖,王鹏,许罡,吴旭东. 面向煤矸分拣机器人的煤矸识别定位系统研究. 煤炭科学技术. 2022(01): 237-246 .
    9. 倪云峰,封子杰,郭苹,王静. 基于卷积神经网络的煤矸石识别算法研究. 现代电子技术. 2022(10): 57-62 .
    10. 张红,李晨阳. 基于光学图像的煤矸石识别方法综述. 煤炭工程. 2022(07): 159-163 .
    11. 申利飞,田子建,白林绪. 改进纹理模糊筛选下煤矸石X射线图像处理. 激光与红外. 2022(07): 1090-1097 .
    12. 陈彪,卢兆林,代伟,邵明,于大伟,董良. 基于轻量化HPG-YOLOX-S模型的煤矸石图像精准识别. 工矿自动化. 2022(11): 33-38 . 本站查看
    13. 郑新涛,苏道玉. 基于小波矩的智能手绘草图识别系统设计. 现代电子技术. 2021(12): 177-181 .
    14. 胡璟皓,高妍,张红娟,靳宝全. 基于深度学习的带式输送机非煤异物识别方法. 工矿自动化. 2021(06): 57-62+90 . 本站查看
    15. 王冠军,苏婷婷,刘文博,钱智平,李佳泽. 基于EAIDK的智能煤矸分拣系统设计. 工矿自动化. 2020(01): 105-108 . 本站查看
    16. 柴炳升,胡峰. 石槽村选煤厂重介质浅槽分选工艺探究. 煤炭加工与综合利用. 2020(08): 33-34+38 .
    17. 章振原,秦训鹏,李轶峰. 基于机器视觉的废旧有色金属碎料识别方法. 激光与光电子学进展. 2020(16): 194-201 .
    18. 潘卫东,李新源,员明涛,袁永康,杨克虎. 基于顶煤运移跟踪仪的自动化放煤技术原理及应用. 煤炭学报. 2020(S1): 23-30 .

    Other cited types(31)

Catalog

    Article Metrics

    Article views (88) PDF downloads (13) Cited by(49)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return