NIU Jianfeng. Research on automatic drawing control system on fully-mechanized coal face with sublevel caving[J]. Journal of Mine Automation, 2018, 44(6): 27-30. DOI: 10.13272/j.issn.1671-251x.2018020020
Citation: NIU Jianfeng. Research on automatic drawing control system on fully-mechanized coal face with sublevel caving[J]. Journal of Mine Automation, 2018, 44(6): 27-30. DOI: 10.13272/j.issn.1671-251x.2018020020

Research on automatic drawing control system on fully-mechanized coal face with sublevel caving

More Information
  • In view of problem of low production efficiency of artificial drawing method on fully-mechanized coal face with sublevel caving, an automatic drawing control system was studied.Sonic sensors, vibrating sensors and ash sensors are installed on hydraulic supports. Through artificial demonstration operation and machine learning to memory sensor signals, sensor signal characteristic waveform during the end of drawing process is determined, and the similarity between collected vibration sensing signal, sound sensing signal and the characteristic signal is compared; the ash sensor is used to effectively identify inclusion rate of caved top coal. According to the similarity and inclusion rate, the system execute early warning or direct control to realize automatic drawing control which taking sensor-based sensing control as main control, time control as protection value, and remote intervention control as auxiliary control. The system improves automation level and production efficiency of fully-mechanized coal face with sublevel caving.
  • Related Articles

    [1]LI Libao, YUAN Yong, QIN Zhenghan, LI Bo, YAN Zhengtian, LI Yong. Research on coal-gangue identification technology driven by multi-source fusion of image features and vibration spectrum[J]. Journal of Mine Automation, 2024, 50(11): 43-51. DOI: 10.13272/j.issn.1671-251x.2024080081
    [2]TENG Wenxiang, WANG Cheng, FEI Shuhui. Research on coal gangue recognition algorithm based on HGTC-YOLOv8n model[J]. Journal of Mine Automation, 2024, 50(5): 52-59. DOI: 10.13272/j.issn.1671-251x.2024030064
    [3]CHENG Gang, PAN Zeye, WEI Yifan, CHEN Jie. Research on coal gangue recognition method based on infrared thermal imaging[J]. Journal of Mine Automation, 2024, 50(4): 69-77. DOI: 10.13272/j.issn.1671-251x.2023100086
    [4]HE Kai, CHENG Gang, WANG Xi, GE Qingnan, ZHANG Hui, ZHAO Dongyang. Research on coal gangue recognition method based on CED-YOLOv5s model[J]. Journal of Mine Automation, 2024, 50(2): 49-56, 82. DOI: 10.13272/j.issn.1671-251x.2023090065
    [5]CHENG Gang, CHEN Jie, PAN Zeye, WEI Yifan, CHEN Sensen. Coal gangue recognition method based on water heat transfer and infrared thermal imaging[J]. Journal of Mine Automation, 2024, 50(1): 66-71, 137. DOI: 10.13272/j.issn.1671-251x.2023050056
    [6]ZHANG Shiru, HUANG Zongliu, ZHANG Yuanhao, ZHANG Ao, JI Liang. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation, 2022, 48(11): 39-44. DOI: 10.13272/j.issn.1671-251x.2022060052
    [7]DING Zhen, CHANG Boshen. Near-infrared reflectance spectrum data preprocessing method for coal gangue identification[J]. Journal of Mine Automation, 2021, 47(12): 93-97. DOI: 10.13272/j.issn.1671-251x.17853
    [8]DOU Xijie, WANG Shibo, LIU Houguang, CHEN Qianyou, ZOU Wencai, LU Zhaodong . Coal and gangue identification method based on EMD feature extraction and random forest[J]. Journal of Mine Automation, 2021, 47(3): 60-65. DOI: 10.13272/j.issn.1671-251x.2020100038
    [9]CAO Guanqiang, YU Rui, MENG Xiangtao, ZHAO Wensheng, LIU Qing. Design of vibration sensor for coal gangue identificatio[J]. Journal of Mine Automation, 2021, 47(1): 118-122. DOI: 10.13272/j.issn.1671-251x.2020070097
    [10]ZHANG Liang, NIU Jianfeng, DAI Gang, ZHAO Wensheng. Design of automatic identification system of coal and gangue for fully-mechanized coal caving working face and its applicatio[J]. Journal of Mine Automation, 2014, 40(9): 121-124. DOI: 10.13272/j.issn.1671-251x.2014.09.029
  • Cited by

    Periodical cited type(7)

    1. 范思涵,杨维,田子建. 井下环状金属结构等效多圈小环天线接收电磁波能量安全性分析. 中国矿业. 2024(02): 182-189 .
    2. 郭波超,田子建,侯明硕,石洋名,杨维. 煤矿井下爆炸性环境下电磁波热效应的安全性研究. 工矿自动化. 2024(03): 108-113 . 本站查看
    3. 田子建,侯明硕,孙静,杜欣欣,石洋名. 煤矿井下金属结构等效储能模型耦合电磁波能量安全性分析. 工矿自动化. 2024(07): 136-146 . 本站查看
    4. 范思涵,杨维,田子建. 井下柱状金属结构接收电磁波能量安全性分析. 煤炭科学技术. 2024(S2): 426-434 .
    5. 田子建,降滉舟,常琳,刘斌,王文清. 半波振子结构在井下5G辐射场中的安全性分析. 工矿自动化. 2023(06): 159-167 . 本站查看
    6. 董红涛,田子建,侯明硕,赵晖,卫若茜. 金属振子结构在矿井5G辐射场中的安全功率分析. 工矿自动化. 2023(12): 108-113 . 本站查看
    7. 范思涵,杨维,刘俊波. 井下金属结构近场耦合大环发射天线电磁波能量安全性分析. 工矿自动化. 2022(06): 118-127 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (115) PDF downloads (16) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return