WANG Zhitong, NIU Zhigang, GUO Chenxing, LI Yiju. Design of coal mine detection robot with automatic returning[J]. Journal of Mine Automation, 2018, 44(5): 6-12. DOI: 10.13272/j.issn.1671-251x.2017110034
Citation: WANG Zhitong, NIU Zhigang, GUO Chenxing, LI Yiju. Design of coal mine detection robot with automatic returning[J]. Journal of Mine Automation, 2018, 44(5): 6-12. DOI: 10.13272/j.issn.1671-251x.2017110034

Design of coal mine detection robot with automatic returning

More Information
  • In order to solve problem of limited working travel of coal mine detection robot, a coal mine detection robot was designed, which can independently increase its communication distance and automatically return. When wireless control signal is weakened, the robot will use repeater catapulting system to increase wireless communication distance. When wireless signal is suddenly interrupted, the robot will initiate automatic returning function, and return to a safe place automatically according to sensor data memorized in the scouting process. Automatic returning function of robot adopts integration data method between encoders and laser sensor, uses ICP algorithm to do double data matching and adjust position and orientation gradually of the robot, so as to realize high accuracy in the process of automatic returning. Testing results show that the robot has a long working travel distance and automatic returning function, can work stably and safely at the scene of unknown coal mine disaster, and can replace rescue workers to complete early dangerous detection work in coal mine, provide a significant on-site data information for coal mine rescue.
  • Related Articles

    [1]JI Xianliang, ZHANG Wenjie, WANG Yuqiang, LIU Yong, TIAN Zuzhi, FU Zheng. Research on high-precision coal flow detection of belt conveyors based on machine vision[J]. Journal of Mine Automation, 2024, 50(5): 75-83. DOI: 10.13272/j.issn.1671-251x.2024030028
    [2]GONG Shixin, ZHAO Guorui, WANG Fei. Review on the application of machine vision perception theory and technology in coal industry[J]. Journal of Mine Automation, 2023, 49(5): 7-21. DOI: 10.13272/j.issn.1671-251x.2022100087
    [3]ZHANG Xuhui, WANG Heng, SHEN Qifeng, YANG Wenjuan, ZHANG Chao. Improvement of position and posture measurement system for boom-type roadheader based on machine vision[J]. Journal of Mine Automation, 2022, 48(5): 58-64. DOI: 10.13272/j.issn.1671-251x.2021100051
    [4]WEI Dong, WANG Zhongbin, SI Lei, TAN Chao, LU Xuliang. Research on precise detection method of personnel in shearer operation area[J]. Journal of Mine Automation, 2022, 48(2): 19-28. DOI: 10.13272/j.issn.1671-251x.2021110069
    [5]ZHU Xiaojuan, ZHANG Hao. Research on task allocation of edge computing in intelligent coal mine[J]. Journal of Mine Automation, 2021, 47(6): 32-39. DOI: 10.13272/j.issn.1671-251x.2021050011
    [6]ZHANG Zhiqiang, FENG Wei, ZHAO Xiaohu, YOU Xingyi. Edge computing-oriented scraper detection method for coal preparation plants[J]. Journal of Mine Automation, 2021, 47(4): 92-97. DOI: 10.13272/j.issn.1671-251x.2020100001
    [7]WANG Yudong, DAI Wei, MA Xiaoping. Rapid detection method of bolt abnormality based on machine visio[J]. Journal of Mine Automation, 2021, 47(4): 13-18. DOI: 10.13272/j.issn.1671-251x.2021020038
    [8]YE Jingdong, ZONG Shousong, ZHU Meiqiang, LI Ming. Detection system for coal mine electrical inspection instrument with digital display based on machine visio[J]. Journal of Mine Automation, 2016, 42(9): 13-16. DOI: 10.13272/j.issn.1671-251x.2016.09.004
    [9]LI Hao-min, LU Jian-jun, WEI Che. Research of coal mine safety monitoring and early warning system based on cloud computing[J]. Journal of Mine Automation, 2013, 39(3): 46-49.
    [10]TIAN Yua. Brief Discussion of Application Prospect of Technology of Machine Vision in Coal Mine[J]. Journal of Mine Automation, 2010, 36(5): 30-32.
  • Cited by

    Periodical cited type(36)

    1. 方新秋,吴洋,宋扬,陈宁宁,丰宇龙,冯豪天,贺德幸,乔富康. 基于FBG传感器的带式输送机故障监测研究. 煤炭科学技术. 2025(01): 326-340 .
    2. 张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计. 煤炭工程. 2024(01): 220-224 .
    3. 刘锋,白金牛. 基于视觉技术的胶带输送机煤量检测方法. 陕西煤炭. 2024(01): 52-57+64 .
    4. 刘文梅. 基于煤流量监控的带式输送机监测方案设计. 机械管理开发. 2024(02): 243-244+247 .
    5. 岑梁,尹小明,黄海棠,胡文博,张世荣. 带式输送系统节能优化调度研究. 制造业自动化. 2024(05): 114-119 .
    6. 尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 . 本站查看
    7. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 .
    8. 王涛. 基于改进MobileNet的带式输送机煤量检测研究. 能源与环保. 2024(07): 198-202 .
    9. 尹瑞,张冬雪,倪强. 基于数组的刮板输送机运载模型及煤量计算算法研究. 工矿自动化. 2024(08): 84-90 . 本站查看
    10. 段树深. 基于ROI边缘图像直线特征的井下带式输送机跑偏故障检测方法. 中国矿业. 2024(10): 162-167 .
    11. 刘西尧,纪妙,陈恩博,余宝意,曾庆杰,李海生. 基于机器视觉的烟草输送机皮带跑偏识别方法研究. 设备管理与维修. 2024(19): 165-169 .
    12. 左明明,张习,杨子豪,孙其飞,张梦超,张媛,李虎. 基于深度学习的输送带跑偏状态智能监测方法. 工矿自动化. 2024(12): 166-172+182 . 本站查看
    13. 尚伟栋. 矿用带式输送机过载传感检测中的模糊阈值判断. 煤矿机械. 2023(04): 197-200 .
    14. 秦亚敏,张雷,赵东哲,张金辉,贾英新,靳晔. 基于机器视觉的带式输送机跑偏监测预警方法. 煤矿机械. 2023(05): 165-167 .
    15. 曾飞,胡文祥,高彦鑫,宋杰杰. 基于激光扫描的输送带横向跑偏检测系统. 制造业自动化. 2023(05): 21-24 .
    16. 吕晨辉,李新,刘新龙,赵安新,张晨阳. 基于煤量检测与变频一体机的煤流自适应智能调速. 煤矿机械. 2023(08): 213-216 .
    17. 李阿红. 基于图像处理的矿用带式输送机系统设计及其能效分析. 能源与环保. 2023(07): 228-232+238 .
    18. 曾飞,陶玉衡,苏俊彬,李翔. 融合ResNet18和Deconvolution的输送带横向跑偏检测方法. 现代制造工程. 2023(08): 121-126 .
    19. 毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 . 本站查看
    20. 高京,董华丛. 基于目标检测的铁路货车承载鞍错位故障识别. 自动化技术与应用. 2023(10): 63-67 .
    21. 周坪,马国庆,周公博,马天兵,李远博. 智能化带式输送机健康监测技术研究综述. 仪器仪表学报. 2023(12): 1-21 .
    22. 杨志方,张立亚,郝博南,刘渊,赵青. 基于双流融合网络的输送带跑偏检测方法. 煤炭科学技术. 2023(S2): 259-267 .
    23. 王桂梅,李学晖,杨立洁,刘杰辉. 基于深度学习的永磁直驱带式输送机煤量检测方法研究. 煤炭技术. 2022(01): 188-190 .
    24. 邢建旭,岑梁,卢峰,黄益军,胡文博,邱泽晶,张世荣. 基于带式输送机的仓储转运系统优化调度研究. 机电工程. 2022(03): 402-410 .
    25. 屠鑫. 基于图像识别的中长跑运动员摆臂高度校准方法研究. 河北北方学院学报(自然科学版). 2022(07): 7-12+18 .
    26. 白光星,陈炜乐,孙勇,宋双林,李国芳,王彩萍,王伟峰,康付如. 煤矿带式输送机运输火灾风险智能监测与早期预警技术研究进展. 煤矿安全. 2022(09): 47-54 .
    27. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 .
    28. 刘孝军,王飞. 基于AI的煤矿视频智能分析技术. 煤炭科学技术. 2022(S2): 260-264 .
    29. 姜阔胜,李良和,王开松,胡坤. 煤矿输送带修复点定位及监测系统设计. 煤矿机械. 2021(02): 1-4 .
    30. 王平. 基于数字图像处理的输送带跑偏状态实时监测技术. 煤矿机械. 2021(02): 168-170 .
    31. 云艳. 矿用带式输送机跑偏机理及纠偏系统设计. 能源与环保. 2021(12): 264-268 .
    32. 李林. 矿用皮带输送机纠偏装置的分析研究. 机械管理开发. 2020(08): 74-75+78 .
    33. 高云飞. 带式输送机托辊结构受力分析. 中国石油和化工标准与质量. 2020(15): 157-158 .
    34. 张凯,田原,贾曲. 机器视觉在煤机装备中的应用现状与趋势. 煤矿机械. 2020(12): 123-125 .
    35. 陈小霞,徐伟同,侯飞,高奎,刘兆雪,温玺杰,王兵,王延勇,王晓倩. 基于图像处理的煤炭量AI识别系统的设计. 选煤技术. 2020(06): 75-80 .
    36. 成新文. 带式输送机防跑偏技术分析研究. 内蒙古煤炭经济. 2020(15): 47-48 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (79) PDF downloads (17) Cited by(51)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return