HU Shaohua, GU Zhenyu, JIN Diwen. A fault diagnosis method for axial flow fa[J]. Journal of Mine Automation, 2018, 44(5): 58-63. DOI: 10.13272/j.issn.1671-251x.2017100023
Citation: HU Shaohua, GU Zhenyu, JIN Diwen. A fault diagnosis method for axial flow fa[J]. Journal of Mine Automation, 2018, 44(5): 58-63. DOI: 10.13272/j.issn.1671-251x.2017100023

A fault diagnosis method for axial flow fa

More Information
  • For poor diagnosis effect of existing fault diagnosis methods for axial flow fan based on spectrum analysis which correlated fault type with spectrum characteristic value simply, a fault diagnosis method for axial flow fan based on vector ellipsoid spectrum and hidden Markov model (HMM) was proposed. Firstly, two orthogonal vibration signals of axial flow fan in the same section are fused into a complex signal in time domain, and full-spectrum amplitudes of the vibration signals under multi characteristic frequencies are obtained by fast Fourier transform of the complex signal. Secondly, the full-spectrum amplitudes under different fault conditions are used to train HMM. Finally, full-spectrum amplitudes of real-time vibration signals are as input of HMM, and Viterbi algorithm is used to calculate likelihood probability outputted by HMM. Fault type is judged according to the maximum logarithm value of the likelihood probability, which avoids simple association between the vibration amplitude and fault type. The experimental result shows that correct rate of fault diagnosis of the method is above 90%.
  • Related Articles

    [1]CHEN Tengjie, LI Yong'an, ZHANG Zhihao, LIN Bin. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation, 2024, 50(8): 91-98. DOI: 10.13272/j.issn.1671-251x.2024070043
    [2]HAO Qinxia, LI Huimin. Recognition model of IIoT equipment in coal mine[J]. Journal of Mine Automation, 2024, 50(3): 99-107. DOI: 10.13272/j.issn.1671-251x.2023100092
    [3]HAN Kang, LI Jingzhao, TAO Rongying. Recognition of unsafe behaviors of key position personnel in coal mines based on improved YOLOv7 and ByteTrack[J]. Journal of Mine Automation, 2024, 50(3): 82-91. DOI: 10.13272/j.issn.1671-251x.2024030015
    [4]CAO Shuai, DONG Lihong, DENG Fan, GAO Feng. A small object detection method for coal mine underground scene based on YOLOv7-SE[J]. Journal of Mine Automation, 2024, 50(3): 35-41. DOI: 10.13272/j.issn.1671-251x.2023090088
    [5]SONG Liye, ZHAO Xiaoxuan, CUI Hao. Mining shovel detection algorithm based on improved YOLOv7[J]. Journal of Mine Automation, 2023, 49(12): 18-24, 32. DOI: 10.13272/j.issn.1671-251x.2023070011
    [6]WANG Yuanbin, LIU Jia, GUO Yaru, WU Bingchao. Research on super-resolution reconstruction of mine images[J]. Journal of Mine Automation, 2023, 49(11): 76-83, 120. DOI: 10.13272/j.issn.1671-251x.2023080081
    [7]ZHANG Liya. Foreign object detection method for belt conveyor based on generative adversarial nets[J]. Journal of Mine Automation, 2023, 49(11): 53-59. DOI: 10.13272/j.issn.1671-251x.2023080046
    [8]ZHANG Lei, WANG Haosheng, LEI Weiqiang, WANG Bin, LIN Jiangong. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation, 2023, 49(4): 106-112. DOI: 10.13272/j.issn.1671-251x.2022080043
    [9]DU Jingyi, CHEN Rui, HAO Le, SHI Zhimang. Coal mine belt conveyor foreign object detectio[J]. Journal of Mine Automation, 2021, 47(8): 77-83. DOI: 10.13272/j.issn.1671-251x.2021040026
    [10]XU Zhi, LI Jingzhao, ZHANG Chuanjiang, YAO Lei, WANG Jiwei. Lightweight CNN and its application in coal mine intelligent video surveillance[J]. Journal of Mine Automation, 2020, 46(12): 13-19. DOI: 10.13272/j.issn.1671-251x.17674
  • Cited by

    Periodical cited type(24)

    1. 柳小波,范立鹏,秦丽杰,王连成,张兴帆. 机器视觉技术在矿山行业的应用现状与展望. 有色金属(矿山部分). 2025(02): 1-15 .
    2. 曾飞,李斌,周健,樊江峰. 改进YOLOv7算法的排水管道缺陷检测与几何表征. 现代制造工程. 2024(03): 110-118 .
    3. 王克凡,王羽玲,童建良,杨建国. 基于改进YOLO v8的煤中杂物检测研究. 中国煤炭. 2024(04): 115-125 .
    4. 刘善明,余新阳,欧阳魁. 面向筛面复杂背景的矿山异物视觉检测方法. 计算机技术与发展. 2024(05): 196-204 .
    5. 段宗佑,杨森,孟卓,韩飞. 基于轻量化SimAm-YOLOv7的煤矿输送带异物检测. 煤矿机械. 2024(07): 191-194 .
    6. 王伯涛,周福强,吴国新,王少红. 基于改进YOLOv7的换热器板片故障检测算法研究. 机床与液压. 2024(11): 105-113 .
    7. 张炳建,郝洪涛,刘秀娟,李泽旭. 基于改进YOLOv5s的煤矿输送带异物检测算法. 宁夏工程技术. 2024(02): 174-179 .
    8. 吴利刚,陈乐,刘泽鹏,武晔秋,马宇波,史建华. 基于YOLOv8-ABW的黄花成熟度检测方法. 农业工程学报. 2024(13): 262-272 .
    9. 莫凡,陈波. 基于YOLOv7的运输皮带异物识别算法研究. 煤矿现代化. 2024(05): 115-118+123 .
    10. 张舒,刘建文,陈泊宇. 基于YOLOv7的水工输水管道目标智能识别. 广东水利水电. 2024(09): 62-67 .
    11. 吴钰晶. 基于改进YOLOv4算法的矿用设备关键部件识别研究. 煤炭工程. 2024(09): 165-171 .
    12. 李利,梁晶,陈旭东,寇发荣,潘红光. 基于多注意融合网络的输煤皮带异物识别方法. 西安科技大学学报. 2024(05): 976-984 .
    13. 刘海强,高业成,陈晓晶,葛广建. 基于改进YOLOv7的煤矿输送带异物识别算法. 仪表技术与传感器. 2024(10): 95-99 .
    14. 郭志聪,张雷. 基于改进YOLOv8的低照度煤矿传送带异物识别算法. 电子测量技术. 2024(21): 188-196 .
    15. 罗府勤,方芳. 不同物料带式输送系统的设计与改进研究——以制糖企业甘蔗输送设备为例. 造纸装备及材料. 2023(01): 62-64 .
    16. 涂宙霖,陈涵深. 基于YOLOv7与Jetson Orin的路面破损检测系统的设计与实现. 电脑知识与技术. 2023(09): 50-52 .
    17. 王琢. 基于人工智能的煤矿生产带式输送机巡检机器人应用研究. 内蒙古煤炭经济. 2023(08): 16-18 .
    18. 张泽龙,林穿,黄奕钒. 基于改进YOLOv7模型的变电站异物入侵识别. 国外电子测量技术. 2023(06): 180-187 .
    19. 毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 . 本站查看
    20. 龙燕,杨智优,何梦菲. 基于改进YOLOv7的疏果期苹果目标检测方法. 农业工程学报. 2023(14): 191-199 .
    21. 贺杰,王标,王瑞君. 基于融合多传感器的煤矿带式输送机视频巡检系统设计与应用. 煤矿机械. 2023(12): 148-151 .
    22. 李志阳. 带式输送机张紧绞车自锁特性分析. 自动化应用. 2023(21): 250-252 .
    23. 李江涛,张康辉,沙特. 煤中异物识别的深度学习模型轻量化策略. 煤炭工程. 2023(S1): 220-224 .
    24. 吴利刚,陈乐,吕媛媛,张喆. 基于轻量化的输送带块煤实时监测方法. 煤炭科学技术. 2023(S2): 285-293 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (123) PDF downloads (11) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return