Research of distributed multi-point laser methane detection system
1.
CCTEG Chongqing Research Institute, Chongqing 400039, China
2.
State Key Laboratory for Gas Disaster Monitoring and Emergency Technology, Chongqing 400037, China
More Information
Abstract
For problems of being easily affected by environment, low detection decision and poor stability in traditional methane detection system, a distributed multi-point laser methane detection system was designed based on tunable diode laser absorption spectroscopy technology and space division multiplexing technology. The system adopts distributed feedback semiconductor laser with wavelength of 1 653.7 nm as light source, uses ratio of the second harmonic and the first harmonic gotten by harmonic detection to invert methane concentration, and employs 1/8 beam splitter and reference air chamber to realize real-time multi-point methane concentration detection. The system has been tested in laboratory. The test results show that the system has high accuracy and good stability, can realize monitoring points within 10 km effectively covered, and measurement error is less than 2% when methane concentration is 2.00%-85.0%.
Related Articles
[1] ZHANG Shaobin, JIANG Weiliang, RUI Feng. Current status and development trend of measuring methods of conveying capacity of mine-used belt conveyor [J]. Journal of Mine Automation, 2019, 45(5): 100-103. DOI: 10.13272/j.issn.1671-251x.2019010055
[2] MEN Rujia, LEI Zhipeng, LIN Lingyan, ZHANG Guodong, ZHAO Ruixue, ZHU Jianfei, XU Chunyu, SONG Jiancheng, TIAN Muqin. Insulation state assessment of mine-used ethylene propylene rubber cable under electro-thermal aging [J]. Journal of Mine Automation, 2019, 45(4): 67-71. DOI: 10.13272/j.issn.1671-251x.2019010038
[3] ZHANG Jianwen, QI Minghui, WANG Zheng, YAN Jiaming. An accurate estimation method for state of charge of mine-used energy storage battery [J]. Journal of Mine Automation, 2019, 45(1): 65-69. DOI: 10.13272/j.issn.1671-251x.2018060036
[4] LI Qiwei. Design of lithium battery management system for explosion-proof electric vehicle [J]. Journal of Mine Automation, 2017, 43(4): 5-9. DOI: 10.13272/j.issn.1671-251x.2017.04.002
[5] GUAN Hengzhu, DING Guibao, XIAO Qu. Research of selection method of transformer capacity for mine vertical shaft constructio [J]. Journal of Mine Automation, 2016, 42(1): 67-70. DOI: 10.13272/j.issn.1671-251x.2016.01.020
[6] YANG Lei, YANG Yi, YANG Dongyong, GU Dongyua. Estimation method of state of charge of lithium battery for nodes of wireless sensor network [J]. Journal of Mine Automation, 2015, 41(1): 29-32. DOI: 10.13272/j.issn.1671-251x.2015.01.008
[7] RUI Qihua, ZHAO Liang, WANG Lei, LI Jiyu. Design of mine-used battery management system for large capacity LiFePO4 [J]. Journal of Mine Automation, 2014, 40(2): 5-7. DOI: 10.13272/j.issn.1671-251x.2014.02.002
[8] WANG Sha-sha, LOU Gao-feng, TANG Xia, SHI Li-ping, ZHANG En-feng. State of charge estimation of battery in mine-used movable lifesaving cabin based on extended Kalman filtering method [J]. Journal of Mine Automation, 2013, 39(2): 43-47.
[9] LU Yong-fang, CHENG Zhi-lei, WANG Xiao-wei, LIU Ying-ying. Research of Power Prediction of Wind Farm Based on Sequential Index Smoothing Method [J]. Journal of Mine Automation, 2012, 38(8): 75-78.
Cited by
Periodical cited type(9)
1.
刘建功,张党育,谢国强,卢新明,刘扬,杨军辉,赵家巍. 煤矿立体生态矿山建设技术研究. 中国煤炭. 2025(01): 2-11 .
2.
张子航,刘扬,杨尚青,薄灿,张子峣,李明泽. 固体密实充填自适应滑模路径跟踪控制研究. 中国煤炭. 2025(01): 57-66 .
3.
付祖冈,张定堂,李帅,闫善飞. 超长工作面大采高矸石充填技术研究与应用. 煤炭技术. 2024(04): 79-83 .
4.
潘虹,陈江萍,王玉芳. 基于混合遗传算法的皮革产业固废运输路径优化研究. 中国皮革. 2024(04): 55-58 .
5.
张强,张吉雄,杨康,巨峰,黄鹏,王云搏,吕浩南. 综合机械化放顶煤充填开采技术构想及理论框架研究. 中国矿业大学学报. 2024(03): 469-482 .
6.
朱磊,刘成勇,宋天奇,古文哲,成超,赵萌烨,吴玉意,黄剑斌,袁超峰. 煤矿井下浆体充填智能化系统研究与应用. 煤矿安全. 2024(08): 242-248 .
7.
董宪姝. 选煤固废资源化利用研究进展. 煤炭工程. 2024(10): 108-121 .
8.
胡忍. 浅析煤矿充填开采工艺设计研究. 内蒙古煤炭经济. 2023(19): 37-39 .
9.
刘具,秦坤. 我国煤炭绿色开采技术进展. 矿业安全与环保. 2023(06): 7-15 .
Other cited types(1)