HAO Qinxia, WANG Yang, LI Guomin, JIN Tiantian. Online intelligent examination system of coal mine enterprises based on improved GAAA algorithm[J]. Journal of Mine Automation, 2015, 41(7): 25-30. DOI: 10.13272/j.issn.1671-251x.2015.07.007
Citation: HAO Qinxia, WANG Yang, LI Guomin, JIN Tiantian. Online intelligent examination system of coal mine enterprises based on improved GAAA algorithm[J]. Journal of Mine Automation, 2015, 41(7): 25-30. DOI: 10.13272/j.issn.1671-251x.2015.07.007

Online intelligent examination system of coal mine enterprises based on improved GAAA algorithm

More Information
  • An online intelligent examination system of coal mining enterprises was proposed based on analysis of actual examination requirements of enterprise employees. A Web examination system is built firstly according to professional characteristics of the employees, and the system is optimized functionality. Secondly, GAAA algorithm integrated with genetic algorithm and ant algorithm is improved. The improved GAAA algorithm firstly updates ant colony pheromone, then searches test database by a comprehensive search of genetic algorithm and parallel distribution of ant algorithm for optimizing group volume of the database. At last, the improved GAAA algorithm is applied in the system to achieve examination of employees at anytime they like and anywhere they are and auto-generating examination paper. The practical application shows that speed of auto-generating examination paper of the system is high, repetition rate is low, the algorithm is feasible, and the system can meet practical requirements of online examination effectively and improve online examination efficiency of coal mine enterprise.
  • Related Articles

    [1]HUANG Yuxin, YAN Zhenguo, FAN Jingdao, LI Chuan. Coal mine dual prevention information system based on Apriori algorithm[J]. Journal of Mine Automation, 2020, 46(10): 92-98. DOI: 10.13272/j.issn.1671 -251x.2020040095
    [2]GUO Zijian, LI Junshi. Design of software test platform for SAP integrated pressure pumping system[J]. Journal of Mine Automation, 2019, 45(12): 101-105. DOI: 10.13272/j.issn.1671-251x.2019080040
    [3]MO Shupei, TANG Jin, DU Yongwan, CHEN Ming. Underground adaptive positioning algorithm based on SAPSO-BP neural network[J]. Journal of Mine Automation, 2019, 45(7): 80-85. DOI: 10.13272/j.issn.1671-251x.2019010066
    [4]JIANG Lei, YANG Liuming, WU Fangda, HAN Huijie, ZHOU Xue. Underground positioning method based on GMapping algorithm and fingerprint map constructio[J]. Journal of Mine Automation, 2017, 43(9): 96-101. DOI: 10.13272/j.issn.1671-251x.2017.09.017
    [5]XU Huan, LI Zhenbi, JIANG Yuanyuan, HUANG Jianbo, HUANG Da. Research of automatic detection algorithm of conveying belt deviation based on OpenCV[J]. Journal of Mine Automation, 2014, 40(9): 48-52. DOI: 10.13272/j.issn.1671-251x.2014.09.012
    [6]WANG Qi-feng, ZHU Guo-yuan, SUN Xiao-ji. Design of FPGA-based Substation of Safety Monitoring and Control System of Coal Mine[J]. Journal of Mine Automation, 2010, 36(10): 29-31.
    [7]DAI Ming-jun, CHENG Can, SHEN Zhong-ze. Application Research of Apriori Algorithm of Association Rules in Production Scheduling Subsystem of Coal Mine[J]. Journal of Mine Automation, 2010, 36(7): 62-64.
    [8]LI Ming-hua. ISOMAP Algorithm and LLE Algorithm in Image Retrieval and Their Compariso[J]. Journal of Mine Automation, 2007, 33(6): 30-31.
    [9]ZHOU Jun, LI Xin-hao. Automatic Nondestructive Testing System of Fluorescent Magnetic Particle[J]. Journal of Mine Automation, 2005, 31(1): 15-16.
    [10]FAN Zhong-mi. To Add Automatic Testing to Shears[J]. Journal of Mine Automation, 2001, 27(5): 27-28.
  • Cited by

    Periodical cited type(8)

    1. 卢振. 基于随机森林算法的通风网络故障判识. 能源与节能. 2024(02): 71-74+78 .
    2. 张浪,刘彦青. 矿井智能通风与关键技术研究. 煤炭科学技术. 2024(01): 178-195 .
    3. 安赛,赵忠辉,张浪,李伟,彭然. 矿用对射式风速风向传感器设计. 工矿自动化. 2024(04): 50-54 . 本站查看
    4. 蔡震坤,陈禹. 超声波测风系统的设计及低速风洞试验分析. 科学技术创新. 2024(15): 215-218 .
    5. 郝天轩,张赞旺,李帆,王泽华. 基于STM32的无线传输便携式风速表的设计. 煤炭技术. 2024(08): 282-286 .
    6. 陈炫中,王孝东,杨懿杰,吕玉琪,刘唱,杜青文,谢博. 矿井巷道风速智能感知技术研究进展. 矿产保护与利用. 2024(04): 124-134 .
    7. 周福宝,辛海会,魏连江,时国庆,夏同强. 矿井智能通风理论与技术研究进展. 煤炭科学技术. 2023(01): 313-328 .
    8. 贠文倩. 通风与安全在矿井开采中的应用. 内蒙古石油化工. 2023(07): 52-55 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (107) PDF downloads (10) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return