HAO Qingyu, ZHU Yuanzhong, CHEN Jian. Coal-rock interface identification based on image multi-wavelet transformatio[J]. Journal of Mine Automation, 2015, 41(2): 50-53. DOI: 10.13272/j.issn.1671-251x.2015.02.014
Citation: HAO Qingyu, ZHU Yuanzhong, CHEN Jian. Coal-rock interface identification based on image multi-wavelet transformatio[J]. Journal of Mine Automation, 2015, 41(2): 50-53. DOI: 10.13272/j.issn.1671-251x.2015.02.014

Coal-rock interface identification based on image multi-wavelet transformatio

More Information
  • In view of problems of poor universality and low reliability in existing identification method of coal-rock interface, an identification method of coal-rock interface based on image multi-wavelet transformation was proposed. Firstly, coal-rock image is transformed by multi-wavelet. Then standard deviation under fixed window size with multi-wavelet coefficients of different frequency bands is extracted as texture measure and normalization multi-band feature vector is formed. Finally, texture feature is identified by naive Bayes classifier. The experimental results show that identification rate can achieve 96.14% when window size is 9 and feature vector constructed by frequency bands 5-16 for image of resolution 128×128.
  • Related Articles

    [1]WU Yulun, XIAO Tannan, CHEN Ying. Fault diagnosis method for substations based on fault enumeration tree to generate fuzzy Petri net[J]. Journal of Mine Automation, 2025, 51(1): 85-94. DOI: 10.13272/j.issn.1671-251x.18233
    [2]CHENG Lei, LI Zhengjian, SHI Haorong, WANG Xin. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation, 2024, 50(1): 131-137. DOI: 10.13272/j.issn.1671-251x.2023090062
    [3]FAN Zhanwen, LIU Bo. Research on cooperative control of fully mechanized mining equipment based on improved Elman neural network[J]. Journal of Mine Automation, 2021, 47(S2): 26-28.
    [4]ZHANG Mei, XU Tao, SUN Huihuang, MENG Xiangyu. Fault diagnosis of mine hoist based on fuzzy fault tree and Bayesian network[J]. Journal of Mine Automation, 2020, 46(11): 1-5. DOI: 10.13272/j.issn.1671-251x.17562
    [5]MENG Xiangang, YU Xiao, LI Xiaojing. Fault diagnosis of mine hoist deceleration system based on fuzzy Petri net[J]. Journal of Mine Automation, 2019, 45(6): 91-95. DOI: 10.13272/j.issn.1671-251x.2018120059
    [6]SUN Huiying, LIN Zhongpeng, HUANG Can, CHEN Peng. Fault diagnosis of mine ventilator based on improved BP neural network[J]. Journal of Mine Automation, 2017, 43(4): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.04.009
    [7]SUN Qidong, ZHANG Kairu, SONG Xiangmin, LI Liming, MA Hui, WANG Yi. Research of single-phase fault line selection of power distribution network based on fifth harmonics energy and LM-Elman neural network[J]. Journal of Mine Automation, 2016, 42(8): 61-64. DOI: 10.13272/j.issn.1671-251x.2016.08.015
    [8]LIU Jingyan, LI Yudong, GUO Shunjing. Gear box fault diagnosis based on Elman neural networ[J]. Journal of Mine Automation, 2016, 42(8): 47-51. DOI: 10.13272/j.issn.1671-251x.2016.08.012
    [9]GONG Maofa, LIU Yanni, WANG Laihe, ZHANG Chao, HOU Linyua. Fault diagnosis of mine hoist based on optimizing fuzzy Petri networks[J]. Journal of Mine Automation, 2016, 42(7): 50-53. DOI: 10.13272/j.issn.1671-251x.2016.07.012
    [10]GAO Zhengzhong, GONG Qunying, ZHAO Lina, XU Huanqi, XIAO Jiayi. Fault diagnosis of underground water pump based on fuzzy Petri net and condition monitoring[J]. Journal of Mine Automation, 2016, 42(5): 28-31. DOI: 10.13272/j.issn.1671-251x.2016.05.007

Catalog

    Article Metrics

    Article views (61) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return