WANG Huizhong, XIAO Yingchun, ZHANG Ying, ZHU Hongyi. Study on fault diagnosis technologies of motor[J]. Journal of Mine Automation, 2015, 41(1): 40-44. DOI: 10.13272/j.issn.1671-251x.2015.01.011
Citation: WANG Huizhong, XIAO Yingchun, ZHANG Ying, ZHU Hongyi. Study on fault diagnosis technologies of motor[J]. Journal of Mine Automation, 2015, 41(1): 40-44. DOI: 10.13272/j.issn.1671-251x.2015.01.011

Study on fault diagnosis technologies of motor

More Information
  • The paper introduced types and causes of common electrical and mechanical faults of motor, and described application of signal processing methods and intelligent diagnosis methods in fault diagnosis of motor. The signal processing methods include short-time Fourier transform, wavelet transform, wavelet packet transform and empirical mode decomposition. The intelligent diagnosis methods include expert system, fuzzy theory, support vector machine and neural network. It also pointed out development trend of fault diagnosis technologies of motor is combination of multiple diagnosis methods and information fusion method.
  • Related Articles

    [1]QIU Ji'er, WANG Qi, WANG Peng. Fault diagnosis method for underground coal mining equipment audio signals based on improved transfer learning[J]. Journal of Mine Automation, 2025, 51(2): 91-99. DOI: 10.13272/j.issn.1671-251x.2025010027
    [2]HAO Hongtao, QIU Yuanyuan, DING Wenjie. A fault diagnosis method for roller based on small sample sound signals[J]. Journal of Mine Automation, 2023, 49(8): 106-113. DOI: 10.13272/j.issn.1671-251x.2022120007
    [3]ZHAO Yihui, ZHAO Youjun, ZHOU Zhan. Research status of intelligent technology of shearer in fully mechanized working face[J]. Journal of Mine Automation, 2022, 48(2): 11-18,28. DOI: 10.13272/j.issn.1671-251x.2021090024
    [4]JING Haixiang, HUANG Yourui, XU Shanyong, TANG Chaoli. Research on the predictive fault diagnosis of mine ventilator based on digital twin and probabilistic neural network[J]. Journal of Mine Automation, 2021, 47(11): 53-60. DOI: 10.13272/j.issn.1671-251x.17852
    [5]SUN Huiying, LIN Zhongpeng, HUANG Can, CHEN Peng. Fault diagnosis of mine ventilator based on improved BP neural network[J]. Journal of Mine Automation, 2017, 43(4): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.04.009
    [6]GONG Maofa, LIU Yanni, WANG Laihe, ZHANG Chao, HOU Linyua. Fault diagnosis of mine hoist based on optimizing fuzzy Petri networks[J]. Journal of Mine Automation, 2016, 42(7): 50-53. DOI: 10.13272/j.issn.1671-251x.2016.07.012
    [7]HUA Wei, JI Xiaodong, DONG Shuochang, WU Miao. Research of vibration signal extraction and fault diagnosis of shearer cutting unit[J]. Journal of Mine Automation, 2015, 41(2): 94-97. DOI: 10.13272/j.issn.1671-251x.2015.02.026
    [8]XU Yunzhi, FANG Lei, SHI Liping, YAN Jiaming, TANG Yi, MIAO Changxi. Fault diagnosis of motor based on improved instantaneous power method[J]. Journal of Mine Automation, 2014, 40(12): 69-73. DOI: 10.13272/j.issn.1671-251x.2014.12.018
    [9]GAO Xiang-ming, CHEN Yong-chao. Research of distributed fault diagnosis and protection system of motor based on Internet of Things[J]. Journal of Mine Automation, 2013, 39(6): 17-21.
    [10]ZHANG Guo-Wei. Research of Fault Detection and Intelligent Diagnosis Technology of Heavy-loading Machinery in Copper-scandium Metal Mine[J]. Journal of Mine Automation, 2011, 37(8): 34-37.
  • Cited by

    Periodical cited type(3)

    1. 林冬. 煤矿带式输送机异物检测系统的设计研究. 自动化应用. 2025(03): 138-141 .
    2. 徐慈强,贾运红,田原. 基于MES-YOLOv5s的综采工作面大块煤检测算法. 工矿自动化. 2024(03): 42-47+141 . 本站查看
    3. 周美容,莫乙帆. 基于运载量的带式输送机模型构建及节能效果分析. 造纸装备及材料. 2024(06): 21-23 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (64) PDF downloads (16) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return