FENG Weibing, HU Junmei, CAO Genniu. Underground image denoising method based on improved simplified pulse coupled neural network[J]. Journal of Mine Automation, 2014, 40(5): 54-58. DOI: 10.13272/j.issn.1671-251x.2014.05.014
Citation: FENG Weibing, HU Junmei, CAO Genniu. Underground image denoising method based on improved simplified pulse coupled neural network[J]. Journal of Mine Automation, 2014, 40(5): 54-58. DOI: 10.13272/j.issn.1671-251x.2014.05.014

Underground image denoising method based on improved simplified pulse coupled neural network

More Information
  • In order to solve problems of traditional image denoising methods such as image blur, edge information loss and so on, an image denoising method based on improved simplified pulse coupled neural network was proposed according to characteristics of underground images including uneven luminosity and large noise. Selection of neurons joining strength β was improved, which made β depend on pixel gray value of image, so as to get better denoising effect. At the same time, selection of decay time constant αE of dynamic threshold was improved, which made αE depend on amplification coefficient vE of threshold output, so as to reduce number of parameters of simplified pulse coupled neural network model. The value of vE was selected through experiment. The experiment results show that the method removes salt and pepper noise of underground images more effectively and preserves details of image edge more completely than traditional median filtering and mean filtering.
  • Related Articles

    [1]CHENG Lei, LI Zhengjian, SHI Haorong, WANG Xin. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation, 2024, 50(1): 131-137. DOI: 10.13272/j.issn.1671-251x.2023090062
    [2]TIAN Jie, LI Yang, ZHANG Lei, LIU Zhen. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation, 2023, 49(7): 67-74. DOI: 10.13272/j.issn.1671-251x.2022100017
    [3]MO Shupei, TANG Jin, DU Yongwan, CHEN Ming. Underground adaptive positioning algorithm based on SAPSO-BP neural network[J]. Journal of Mine Automation, 2019, 45(7): 80-85. DOI: 10.13272/j.issn.1671-251x.2019010066
    [4]WEI Wenhui, GUO Ye. Boundary effects optimization of ZigBee wireless location based on BP neural network[J]. Journal of Mine Automation, 2014, 40(11): 65-70. DOI: 10.13272/j.issn.1671-251x.2014.11.016
    [5]LI Mao-dong, LIANG Yong-zhi, JIA Wen-pei, XIA Lu-yi. Application of BP neural network method based on genetic optimization in methane detectio[J]. Journal of Mine Automation, 2013, 39(2): 51-53.
    [6]FU Hua, LI Da-zhi. PID Self-tuning Control System Based on Neural Network[J]. Journal of Mine Automation, 2009, 35(7): 72-75.
    [7]ZHAO Yan-ming. Predicting Model of Gas Content Based on Improved BP Neural Network[J]. Journal of Mine Automation, 2009, 35(4): 10-13.
    [8]HAN Bing, FU Hua. Gas Monitoring System Based on Data Fusion with BP Neural Network[J]. Journal of Mine Automation, 2008, 34(4): 10-13.
    [9]GUO Xiu-cai, SHU Huai-li. Temperature Control System Based on PID Neural Network[J]. Journal of Mine Automation, 2008, 34(3): 30-32.
    [10]SHU Huai-lin , GUO Xiu-cai . PID Neural Network Control System of Multi-variable and Strong-coupled Time-varying System[J]. Journal of Mine Automation, 2003, 29(5): 16-18.
  • Cited by

    Periodical cited type(10)

    1. 尹波,彭雷祥,王正超,张磊,尹宜辰. 基于精细地质建模的开采沉陷预计算法优化与应用研究. 煤炭工程. 2025(01): 23-28 .
    2. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 .
    3. 韩晓刚,王江梅,朱万成,李荟,徐晓冬,秦涛,景树柱,韩国平. 多源数据融合的双阳煤矿精细化建模及虚拟现实平台搭建. 矿业研究与开发. 2024(03): 178-184 .
    4. 于建军,王建成,刘百祥. 基于地质物探数据的工作面透明地质模型构建研究与应用. 山东煤炭科技. 2024(04): 157-161+167+173 .
    5. 赵亦辉,周转会,杨青,孙永锋,吴振. 采煤机单刀截割曲线最优生成算法研究. 煤炭技术. 2024(06): 224-227 .
    6. 王海军,郑三龙,王相业,董敏涛,吴艳,马良,杨伟,朱玉英. 地质构造隐蔽致灾因素透明化勘查技术——以新疆屯宝煤矿为例. 煤炭科学技术. 2024(09): 173-188 .
    7. 李蔚林,赵嘉良,阮柳谭,李泽荃. 基于空间自回归插值方法的煤层厚度预测研究. 煤炭工程. 2024(S1): 112-119 .
    8. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 .
    9. 李森,李重重,刘清. 基于透明地质的综采工作面规划截割协同控制系统. 煤炭科学技术. 2023(04): 175-184 .
    10. 刘亚,王静宜. 煤层智能化开采设备状态远程监测系统设计. 自动化与仪器仪表. 2023(05): 332-336 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (30) PDF downloads (6) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return