WANG Shouyi, LI Zhen, ZHU Yijun, CHEN Sia. Research of fault diagnosis of lubricating oil in coal mining equipment[J]. Journal of Mine Automation, 2014, 40(2): 33-36. DOI: 10.13272/j.issn.1671-251x.2014.02.010
Citation: WANG Shouyi, LI Zhen, ZHU Yijun, CHEN Sia. Research of fault diagnosis of lubricating oil in coal mining equipment[J]. Journal of Mine Automation, 2014, 40(2): 33-36. DOI: 10.13272/j.issn.1671-251x.2014.02.010

Research of fault diagnosis of lubricating oil in coal mining equipment

More Information
  • In view of problems that traditional lubricating oil analysis method exists long test and analysis period and high cost, and cannot reflect lubricating oil state and running state of coal mining equipment systematically, a multi-parameter fusion diagnosis method was proposed. The method constructs multi-parameter pattern vector of lubricating oil by collecting viscosity, density, dielectric constant and temperature of the lubricating oil used in coal mining equipment, and judges equipment state through analysis on pattern vector of state to be detected and standard pattern vector. It discovers internal correlation and variation law of pollution state parameters of the lubricating oil by comparing with ferrography analysis result of the lubricating oil. The experimental result shows that the method can realize accurate and rapid diagnosis of pollution state of lubricating oil and running state of coal mining equipment.
  • Related Articles

    [1]GUO Xijin, SHAO Hongqing, YANG Chunbao, ZHANG Zhiqiang. Research on PFC-PID control algorithm of density and liquid level in heavy medium suspensio[J]. Journal of Mine Automation, 2018, 44(1): 89-95. DOI: 10.13272/j.issn.1671-251x.2017030088
    [2]GONG Shangfu, YANG Na. Chain tension control of scraper conveyor based on sliding mode control[J]. Journal of Mine Automation, 2015, 41(2): 57-60. DOI: 10.13272/j.issn.1671-251x.2015.02.016
    [3]SUN Xiao-xi, HUANG You-rui, QU Li-guo. Research of time-delay control of wireless network based on RBF neural network PID control[J]. Journal of Mine Automation, 2013, 39(12): 76-81. DOI: 10.7526/j.issn.1671-251X.2013.12.019
    [4]LIU Jie, YANG Hai-qun. Application research of wavelet neural network and PID in maximum power point tracking of wind power system[J]. Journal of Mine Automation, 2013, 39(12): 73-76. DOI: 10.7526/j.issn.1671-251X.2013.12.018
    [5]GUO Xing-ge, WU Jiao-jiao, LIU Jing, SUN Li. Self-tuning fault-tolerant PID control for mine hoist based on BP neural network[J]. Journal of Mine Automation, 2013, 39(6): 45-48.
    [6]AN Feng, LI CAI-yun, WU Xiao-jun, MENG Xin, XUE Pu-chang. Design of PID Controller of Electro-hydraulic Servo System for Running Deviation of Strip Coiler[J]. Journal of Mine Automation, 2009, 35(7): 79-82.
    [7]FU Hua, LI Da-zhi. PID Self-tuning Control System Based on Neural Network[J]. Journal of Mine Automation, 2009, 35(7): 72-75.
    [8]LIU Shi-xian, ZHU Hua, WANG Yong, ZHU Feng-pei. Design of Control System of Emulsion Liquid Level Based on Fuzzy-PID Control[J]. Journal of Mine Automation, 2009, 35(4): 17-19.
    [9]ZHAO Shao-gang, GAO Sheng. Study on Nonlinear PID Control for Three-level Rectifier[J]. Journal of Mine Automation, 2004, 30(3): 7-9.
    [10]LI Zu-xin , ZHANG Yu-feng , SHI Xin-ling . A New P-FUZZY-PID Controller with Switching Based on Fuzzy Rules[J]. Journal of Mine Automation, 2003, 29(1): 4-6.
  • Cited by

    Periodical cited type(9)

    1. 马广伟. 基于PID控制器参数优化的煤矿智能掘进机自动控制研究. 能源与环保. 2025(01): 194-198+206 .
    2. 马宏伟,孙思雅,王川伟,毛清华,薛旭升,刘鹏,田海波,王鹏,张烨,聂珍,马柯翔,郭逸风,张恒,王赛赛,李烺,苏浩,崔闻达,成佳帅,喻祖坤. 论“掘进就是掘模型”的学术思想. 煤炭学报. 2025(01): 661-675 .
    3. 许向前,简阔,王宁,李胜利. 考虑煤岩硬度的悬臂式掘进机截割控制. 工矿自动化. 2024(04): 153-158 . 本站查看
    4. 李国栋. 掘进机截割路径优化与动力学分析. 机械管理开发. 2024(04): 216-218 .
    5. 马宏伟,王赛赛,王川伟,薛力猛,张恒,孙思雅. 短横轴截割机器人直墙拱形巷道自动成形控制方法. 西安科技大学学报. 2024(03): 418-429 .
    6. 毛清华,陈彦璋,马骋,王川伟,张飞,柴建权. 基于模糊神经网络PID的煤矿掘进机俯仰控制研究. 工矿自动化. 2024(08): 135-143 . 本站查看
    7. 王建皓. EBH360悬臂式掘进机截割臂结构优化研究. 今日制造与升级. 2024(10): 127-129 .
    8. 李申龙. 煤矿巷道掘进机液压系统随机振动负载控制技术. 液压气动与密封. 2024(12): 61-67 .
    9. 刘晓军. 悬臂式掘进机自动调速控制技术的研究. 自动化应用. 2023(17): 53-56 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (48) PDF downloads (11) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return