ZHANG Xuan, LI Chonggui, YANG Fa. Research of algorithm of walking track for underground personnel[J]. Journal of Mine Automation, 2014, 40(1): 42-45. DOI: 10.13272/j.issn.1671-251x.2014.01.012
Citation: ZHANG Xuan, LI Chonggui, YANG Fa. Research of algorithm of walking track for underground personnel[J]. Journal of Mine Automation, 2014, 40(1): 42-45. DOI: 10.13272/j.issn.1671-251x.2014.01.012

Research of algorithm of walking track for underground personnel

More Information
  • For problems that current coal mine personnel positioning system adopts region positioning method, and cannot directly determine exact location and movement direction of underground personnel, an algorithm based on tree structure was proposed, which uses topological relations to calculate track that underground personnel may walk. The algorithm defines a topology model with point and segment, segment and segment as well as segment and point. Based on the model, tree structure is built and personnel walking track is got by its hierarchy traversal. In the calculation process, the algorithm uses real-time status information of receiver to preclude impact of non-working receiver and substations automatically, and ensures tracking accuracy.
  • Related Articles

    [1]LIU Xiaoyang, MA Xinyan, TIAN Zijian, CHEN Wei, WANG Shuai, HU Zongqun. Research on discharge spark safety of equivalent receiving antenna of underground metal structure[J]. Journal of Mine Automation, 2021, 47(9): 126-130.. DOI: 10.13272/j.issn.1671-251x.2021040106
    [2]MA Xiuping, LIU Wei, ZHANG Shen, ZHAI Yanrong, HUANG Hua. Design of visible light communication system used in underground coal mine[J]. Journal of Mine Automation, 2014, 40(1): 16-19. DOI: 10.13272/j.issn.1671-251x.2014.01.005
    [3]ZHANG Quan-sen, HAN Tao, HUANG You-rui. Design of ultra-low power consumption receiver for wireless sensor network[J]. Journal of Mine Automation, 2013, 39(6): 39-44.
    [4]LIU Hu, SHEN Yuan-yua. Design of Wireless Voice Receiving Terminal Based on WiFi[J]. Journal of Mine Automation, 2012, 38(12): 37-40.
    [5]CHEN Zhong-ren, CHEN Fang-jing, WANG Hui. Development of a High-performance Transient Electromagnetic Receiver[J]. Journal of Mine Automation, 2008, 34(3): 5-8.
    [6]YUAN Fei. Design of Infrared Remote Control Receiver of Video Monitoring and Control System of Coal Mine[J]. Journal of Mine Automation, 2008, 34(1): 101-103.
    [7]LI Huai-lu. Sending and Receiving of Signals of Rope Dynamometry Sensor for Mine Hoister[J]. Journal of Mine Automation, 2007, 33(5): 92-94.
    [8]KUANG Shao-long. Development of Clock Extended Device Using GPS Receiver[J]. Journal of Mine Automation, 2005, 31(3): 64-65.
    [9]DING Bao-hua, SHI Cheng-ping. Remote Signal Receiver of High Anti-interference for Underground Belt Nucleonic Scale[J]. Journal of Mine Automation, 1996, 22(4): 40-42.

Catalog

    Article Metrics

    Article views (45) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return