SUN Jiping, PENG Ming. Research and formulation of coal mine information comprehensive bearer network standards[J]. Journal of Mine Automation,2024,50(4):1-8. DOI: 10.13272/j.issn.1671-251x.18185
Citation: SUN Jiping, PENG Ming. Research and formulation of coal mine information comprehensive bearer network standards[J]. Journal of Mine Automation,2024,50(4):1-8. DOI: 10.13272/j.issn.1671-251x.18185

Research and formulation of coal mine information comprehensive bearer network standards

More Information
  • Received Date: April 08, 2024
  • Revised Date: April 10, 2024
  • Available Online: May 09, 2024
  • In order to meet the different requirements of coal mine monitoring, positioning, video, audio, remote control, 5G and other services for latency, reliability, bandwidth and other indicators, the coal mine information comprehensive bearer network should have the following functions. ① The network slicing function supports FlexE interface technology or channelized sub interface technology, and divides port bandwidth resources into different network slices. The services between different network slices are isolated and carried by each other without affecting each other. ② The online bandwidth expansion function of network slicing ensures that there is no packet loss during the bandwidth adjustment process. ③ Network slices set the power-off protection function. ④ The network complies with IEEE 802.3 and TCP/IP protocols, supports IPv6 protocol and IPv6 service bearer, and supports both IPv4 and IPv6 services simultaneously. ⑤ The network supports 10GE optical interface, 1GE optical interface, 10/100/1000 Mbit/s adaptive interface. The core and aggregation nodes should support optical interfaces of 50GE or above. ⑥ It is advisable to use a circular or double ring structure. ⑦ The real time monitoring function for business quality, monitors the delay, jitter, and packet loss rate of specified services in real time. ⑧ 1588v2 clock synchronization function supports 5G base station service access. The main technical indicators of the coal mine information comprehensive bearer network should meet the following requirements. ① The optical port transmission distance should be ≥ 20 km. The transmission distance of the electrical port should be ≥ 100 meters. ② The transmission rate of the backbone network should be ≥ 10 Gbit/s. The transmission rate of the access network should be ≥ 1 Gbit/s. ③ The packet loss rate for different frame lengths is ≤ 0.01% (under 70% network traffic load conditions). ④ The single node transmission delay should be ≤ 1 ms (when the Ethernet frame length is 1518 bytes). ⑤ Node forwarding jitter should be ≤100 μs. ⑥ The number of slices supported by a single interface should be ≥ 5. ⑦ The minimum bandwidth of FlexE interface technology should be ≤1 Gbit/s. The minimum bandwidth of channelized sub interface technology should be ≤ 2 Mbit/s. ⑧ The self-healing time of network reconstruction should be ≤ 50 ms. ⑨ After a power outage in the power grid, the continuous working time of the bearer network equipment under standby power supply should be ≥ 4 hours.
  • [1]
    孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [2]
    孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
    [3]
    孙继平,张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化,2020,46(5):1-7.

    SUN Jiping,ZHANG Gaomin. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation. 2020.46(5):1-7.
    [4]
    MT/T 1131—2011 矿用以太网[S] .

    MT/T 1131-2011 Ethernet for the mine[S].
    [5]
    GB/T 21671—2008 基于以太网技术的局域网系统验收测评规范[S].

    GB/T 21671-2008 Acceptance test specification for local area network(LAN) systems based on ethernet technology[S].
    [6]
    YD/T 1160—2001 接入网技术要求——基于以太网技术的宽带接入网[S].

    YD/T 1160-2001 Access network technical specification-broadband access network based on ethernet technology[S].
    [7]
    MT/T 1081—2008 矿用网络交换机[S].

    MT/T 1081-2008 Network switch for a coal mine[S].
    [8]
    孙继平. 煤矿机器人电气安全技术研究[J]. 煤炭科学技术,2019,47(4):1-6.

    SUN Jiping. Research on electrical safety technology of coal mine robot[J]. Coal Science and Technology,2019,47(4):1-6.
    [9]
    中国电信,华为技术有限公司. 灵活以太网技术白皮书(2018版)[EB/OL]. [2024-03-27]. https://carrier.huawei.com/~/media/CNBG/Downloads/Spotlight/5g/20180920.pdf.

    China Telecom,Huawei Technologies Co. ,Ltd. White paper on flexible ethernet technology(2018 edition)[EB/OL]. [2024-03-27]. https://carrier.huawei.com/~/media/CNBG/Downloads/Spotlight/5g/20180920.pdf.
    [10]
    孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90.
    [11]
    孙继平. 矿井人员位置监测技术[J]. 工矿自动化,2023,49(6):41-47.

    SUN Jiping. Mine personnel position monitoring technology[J]. Journal of Mine Automation,2023,49(6):41-47.
    [12]
    孙继平,田子建. 矿井图像监视系统与关键技术[J]. 煤炭科学技术,2014,42(1):65-68.

    SUN Jiping,TIAN Zijian. Image monitoring system and key technology in underground mine[J]. Coal Science and Technology,2014,42(1):65-68.
    [13]
    孙继平,梁伟锋,彭铭,等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化,2023,49(4):1-8.

    SUN Jiping,LIANG Weifeng,PENG Ming,et al. Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band[J]. Journal of Mine Automation,2023,49(4):1-8.
    [14]
    孙继平. 煤矿用5G通信系统标准研究制定[J]. 工矿自动化,2023,49(8):1-8.

    SUN Jiping. Research and development of 5G communication system standards for coal mines[J]. Journal of Mine Automation,2023,49(8):1-8.
    [15]
    孙继平. 智能矿山信息综合承载网与网络切片路由器[J]. 智能矿山,2023,4(1):14-17.

    SUN Jiping. Intelligent mine information comprehensive bearer network and network slicing router[J]. Journal of Intelligent Mine,2023,4(1):14-17.
    [16]
    孙继平. 煤矿事故特点与煤矿通信、人员定位及监视新技术[J]. 工矿自动化,2015,41(2):1-5.

    SUN Jiping. Characteristics of coal mine accidents and new technologies of coal mine communication,personnel positioning and monitoring[J]. Industry and Mine Automation,2015,41(2):1-5.
    [17]
    孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31.

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31.
    [18]
    孙继平. 煤矿信息化与智能化要求与关键技术[J]. 煤炭科学技术,2014,42(9):22-25,71.

    SUN Jiping. Requirement and key technology on mine informationalization and intelligent technology[J]. Coal Science and Technology,2014,42(9):22-25,71.
    [19]
    孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.
    [20]
    YD/T 3992—2021 灵活以太网(FlexE)链路接口测试方法[S].

    YD/T 3992-2021 Test methods for flexible ethernet(FlexE) interface of link[S].
    [21]
    YD/T 1240—2002 接入网设备测试方法——基于以太网技术的宽带接入网设备[S].

    YD/T 1240-2002 Test method for access network-broadband access based on ethernet technology[S].
    [22]
    YD/T 3918—2021 接入网设备测试方法 支持网络切片的光线路终端(OLT)[S].

    YD/T 3918-2021 Test methods for access network optical line terminal(OLT) supporting network slicing[S].
    [23]
    YD/T 4609—2023 切片分组网络(SPN)南向接口测试方法[S].

    YD/T 4609-2023 Test method of slicing packet networks(SPN) equipment southbound interface[S].
    [24]
    YD/T 4446—2023 切片分组网络(SPN)设备测试方法[S].

    YD/T 4446-2023 Test methods for slicing packet networks(SPN) equipment[S].
  • Related Articles

    [1]LIU Jing, WEI Zhiqiang, CAI Chunmeng, LIU Yang. Positioning method for roadheaders based on fusion of LiDAR and inertial navigation[J]. Journal of Mine Automation, 2025, 51(3): 78-85, 95. DOI: 10.13272/j.issn.1671-251x.2025010021
    [2]WANG Haoran, WANG Hongwei, LI Zhenglong, FU Xiang. Roadheader combined positioning method based on strapdown inertial navigation and differential odometer[J]. Journal of Mine Automation, 2022, 48(9): 148-156. DOI: 10.13272/j.issn.1671-251x.17993
    [3]ZHANG Yufei, MA Hongwei, MAO Qinghua, HUA Hongtao, SHI Jinlong. Coal mine mobile robot positioning method based on fusion of vision and inertial navigatio[J]. Journal of Mine Automation, 2021, 47(3): 46-52. DOI: 10.13272/j.issn.1671-251x.2020110049
    [4]GUO Liang, SONG Jiancheng, NING Zhenbing, WANG Mingyong, LIN Lingyan, HUANG Jianqi. Positioning algorithm of mine-used monorail crane locomotive based on strapdown inertial navigatio[J]. Journal of Mine Automation, 2021, 47(1): 49-54. DOI: 10.13272/j.issn.1671-251x.2020080015
    [5]ZHANG Xuhui, LIU Boxing, ZHANG Chao, YANG Wenjuan, ZHAO Jianxun. Roadheader positioning method combining total station and strapdown inertial navigation system[J]. Journal of Mine Automation, 2020, 46(9): 1-7. DOI: 10.13272/j.issn.1671-251x.17641
    [6]MA Yuan, FU Shichen, ZHANG Ziyue, WANG Dongjie. Research status of pose detection methods of boom-type roadheader[J]. Journal of Mine Automation, 2020, 46(8): 15-20. DOI: 10.13272/j.issn.1671-251x.2020030072
    [7]DU Jingyi, GUO Jinbao, ZHANG Bo. Inertial navigation and positioning system for underground driverless trai[J]. Journal of Mine Automation, 2018, 44(9): 5-9. DOI: 10.13272/j.issn.1671-251x.2018040022
    [8]ZHANG Shouxiang, LI Sen, SONG Lailiang. Positioning of coal mining equipments based on inertial navigation and odometer[J]. Journal of Mine Automation, 2018, 44(5): 52-57. DOI: 10.13272/j.issn.1671-251x.2018010042
    [9]TIAN Yuan. Present situation and development direction of navigation technology of boom-type roadheader[J]. Journal of Mine Automation, 2017, 43(8): 37-43. DOI: 10.13272/j.issn.1671-251x.2017.08.008
    [10]WANG Zhenghe. Trajectory generation algorithm of inertial navigation based on smart phone[J]. Journal of Mine Automation, 2015, 41(5): 87-90. DOI: 10.13272/j.issn.1671-251x.2015.05.021
  • Cited by

    Periodical cited type(14)

    1. 马长青,杨清源,种自强,尤天宸,马鹏飞,李先兴,宋晓杰,卢天壮. 基于GIS与大数据分析的矿压监测预警平台. 煤炭技术. 2024(01): 124-128 .
    2. 张丽芳. 基于智慧矿山的双重预防机制实践与应用. 能源与节能. 2024(04): 65-67 .
    3. 黄坤,江振鹏,杨晓宇,安宁. 煤矿GIS一张图快速构建平台研究. 工矿自动化. 2024(07): 40-46+114 . 本站查看
    4. 周成,张相炎,居里锴. 机械安全风险预警系统构建与应用. 工业安全与环保. 2023(08): 40-46 .
    5. 陈玲玲,张媛媛. 基于应急预警视角的企业内部控制课程体系化创新. 华北科技学院学报. 2023(04): 118-124 .
    6. 宋坤,刘俊峰. 煤矿综合信息管控平台研究. 工矿自动化. 2023(S2): 95-98 . 本站查看
    7. 张倩,王翀,杨泽,伏明. 煤矿智能安全管控系统研究与应用. 中国煤炭. 2023(12): 78-84 .
    8. 张宇驰,陈义,李鸿. 基于视频技术的煤矿在线应急预警系统的研究与应用. 煤炭技术. 2022(02): 189-193 .
    9. 冯春花,张明慧. 基于物联网的煤矿安全监管体系变革探讨. 煤矿安全. 2021(07): 261-264 .
    10. 格日勒,王刚,柳智鑫. 基于视频技术的煤矿在线应急预警系统研究. 能源与环保. 2021(09): 41-45 .
    11. 吕雪梅. 基于多Agent的财务风险预警信息辅助决策系统设计. 微型电脑应用. 2021(10): 150-153 .
    12. 李春贺. 基于智慧矿山的安全风险分级管控与事故隐患排查治理系统. 煤矿安全. 2019(05): 285-288 .
    13. 方权,侯金华,翁永春,李海涛,杨世强,杨晓东. 基于GA-BP算法的远距离高压输电线路风险预警系统. 西安工程大学学报. 2019(05): 531-537 .
    14. 陈汉章,王继生,吴浩. 大型煤炭企业总部集成监控系统设计. 工矿自动化. 2018(12): 89-93 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (228) PDF downloads (54) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return