TIAN Fengliang, WANG Zhongxin, SUN Xiaoyu, et al. Combined prediction model of truck multi-section travel time in open-pit mine based on velocity field[J]. Journal of Mine Automation,2022,48(6):95-99, 146. DOI: 10.13272/j.issn.1671-251x.17916
Citation: TIAN Fengliang, WANG Zhongxin, SUN Xiaoyu, et al. Combined prediction model of truck multi-section travel time in open-pit mine based on velocity field[J]. Journal of Mine Automation,2022,48(6):95-99, 146. DOI: 10.13272/j.issn.1671-251x.17916

Combined prediction model of truck multi-section travel time in open-pit mine based on velocity field

More Information
  • Received Date: March 31, 2022
  • Revised Date: June 15, 2022
  • Available Online: June 27, 2022
  • Due to the complexity of road in open-pit mine, the existing truck travel time prediction methods are difficult in the actual deployment. This leads to the truck optimal scheduling system only realizing scheduling instead of optimization. A combined prediction model of truck multi-section travel time in open pit mine based on velocity field is proposed. The open-pit mine road is divided into multiple road sections. the random forest algorithm is used to construct the unit prediction model to predict the travel time of the truck in each section. Then the predicted values of the unit prediction models are accumulated to obtain the travel time predicted value of the truck on in the composite road section. In order to improve the prediction precision, the average velocity of the truck is taken as an influence factor of the travel time. The velocity field is constructed according to the collected velocity information of the truck. The average value of the truck velocity at all points on a road section is calculated, which is approximate to the average velocity of the truck on the road section, and the average velocity is input into the unit prediction model. Based on the data of truck schedule information in truck dispatching system of Yimin Open-pit Mine, the combined prediction model is trained, and the prediction precision and real-time performance of the model are tested. The results show that the combined prediction model of truck travel time in multiple sections of open-pit mine based on velocity field has high prediction precision for truck travel time in composite road sections. The average absolute error percentage is 4.81%, which is more than 2% lower than the single prediction model based on random forest algorithm. The operation time of the combined prediction model is less than 1 s, which can realize the real-time prediction of truck travel time.
  • [1]
    白润才. 露天矿卡车实时调度优化决策系统及应用效果预测研究[D]. 阜新: 辽宁工程技术大学, 2005.

    BAI Runcai. Research on truck real-time dispatch optimizing decision system and forecast of applied effect in surface mine[D]. Fuxin: Liaoning Technical University, 2005.
    [2]
    SHBAKLO S A, KRUEGER L B. A pilot application study of corridor performance indicators[C]//The Proceedings of the Sixth National Conference on Transportation Planning for Small and Medium-Sized Communities, Washington, 1998: 16-18.
    [3]
    COWLING P,JOHANSSON M. Using real time information for effective dynamic scheduling[J]. European Journal of Operational Research,2002,139(2):230-244. DOI: 10.1016/S0377-2217(01)00355-1
    [4]
    孟小前. 基于行程时间实时预测的露天矿调度服务研究[D]. 北京: 中国矿业大学(北京), 2014.

    MENG Xiaoqian. Research on scheduling services of open-pit mine based on real-time travel time prediction[D]. Beijing: China University of Mining and Technology(Beijing), 2014.
    [5]
    唐少虎,刘小明,陈兆盟,等. 基于计算实验的城市道路行程时间预测与建模[J]. 自动化学报,2015,41(8):1516-1527. DOI: 10.16383/j.aas.2015.c140846

    TANG Shaohu,LIU Xiaoming,CHEN Zhaomeng,et al. Urban road travel time prediction and modeling via computational experiments[J]. Acta Automatica Sinica,2015,41(8):1516-1527. DOI: 10.16383/j.aas.2015.c140846
    [6]
    VANAJAKSHI L, RILETT L R. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed[C]// Proceedings of the Intelligent Vehicles Symposium, Parma, 2004: 194-199.
    [7]
    MEECH J,PARREIRA J. An interactive simulation model of human drivers to study autonomous haulage trucks[J]. Complex Adaptive Systems,2011,6(11):118-123.
    [8]
    OZDEMIR B,KUMRAL M. Appraising production targets through agent-based Petri net simulation of material handling systems in open-pit mines[J]. Simulation Modelling Practice and Theory,2018,87(3):138-154.
    [9]
    CHANDA E K,GARDINER S. A comparative study of truck cycle time prediction methods in open-pit mining[J]. Engineering,Construction and Architectural Management,2010,17(5):446-460. DOI: 10.1108/09699981011074556
    [10]
    SUN Xiaoyu,ZHANG Hang. The use of a machine learning method to predict the real-time link travel time of open-pit trucks[J]. Mathematical Problems in Engineering,2018,4(4):1-14.
    [11]
    ERARSLAN K. Modelling performance and retarder chart of highway trucks by cubic splines for cycle time estimation[J]. Mining Technology,2013,114:161-166.
    [12]
    史文中. 空间数据与空间分析不确定性原理[M]. 北京: 科学出版社, 2015.

    SHI Wenzhong. Uncertainty principle of spatial data and spatial analysis[M]. Beijing: Science Press, 2015.
    [13]
    SILVESTER S A,LOWNDES I S,HARGREAVES D M. A computational study of particulate emissions from an open-pit quarry under neutral atmospheric conditions[J]. Atmospheric Environment,2009,43(40):6415-6424. DOI: 10.1016/j.atmosenv.2009.07.006
    [14]
    TSAPAKIS I,CHENG T,BOLBOL A. Impact of weather conditions on macroscopic urban travel times[J]. Journal of Transport Geography,2013,28:204-211. DOI: 10.1016/j.jtrangeo.2012.11.003
    [15]
    DINDARLOO S R,SIAMI-IRDEMOOSA E. Determinants of fuel consumption in mining trucks[J]. Energy,2016,112(1):232-240.
    [16]
    MOHRI M, ROSTAMIZADEH A. Foundations of machine learning[M]. Cambridge: MIT Press, 2012.
    [17]
    KIM S Y,UPNEJA A. Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models[J]. Economic Modelling,2014,36(1):354-362.
    [18]
    BREIMAN L I,FRIEDMAN J H. Classification and regression trees[J]. Encyclopedia of Ecology,2015,57(3):582-588.
    [19]
    SPOKOINY V,WILLRICH N. Bootstrap tuning in Gaussian ordered model selection[J]. The Annals of Statistics,2019,47(3):1351-1380.
  • Related Articles

    [1]CHENG Lei, LI Zhengjian, SHI Haorong, WANG Xin. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation, 2024, 50(1): 131-137. DOI: 10.13272/j.issn.1671-251x.2023090062
    [2]TIAN Jie, LI Yang, ZHANG Lei, LIU Zhen. Adaptive control of temporary support force based on PSO-BP neural network[J]. Journal of Mine Automation, 2023, 49(7): 67-74. DOI: 10.13272/j.issn.1671-251x.2022100017
    [3]HUI Ali, LU Weiqiang, RONG Xiang, WEI Lipeng, CHEN Wenya. Research on fault diagnosis method of asynchronous motor based on Park-WPT and WOA-LSSVM[J]. Journal of Mine Automation, 2021, 47(12): 106-113. DOI: 10.13272/j.issn.1671-251x.2021070035
    [4]TIAN Jie, YIN Xiaoqi, WEN Yicheng. Method of cutting trajectory planning of roadheader based on hybrid IWO-PSO algorithm[J]. Journal of Mine Automation, 2021, 47(12): 55-61. DOI: 10.13272/j.issn.1671-251x.2021050018
    [5]JU Chen, ZHANG Chao, FAN Hongwei, ZHANG Xuhui, YANG Yiqing, YAN Yang. Rolling bearing fault diagnosis based on wavelet packet decomposition and PSO-BPN[J]. Journal of Mine Automation, 2020, 46(8): 70-74. DOI: 10.13272/j.issn.1671-251x.2019120022
    [6]CUI Lizhen, XU Fanfei, WANG Qiaoli, GAO Lili. Underground adaptive positioning algorithm based on PSO-BP neural network[J]. Journal of Mine Automation, 2018, 44(2): 74-79. DOI: 10.13272/j.issn.1671-251x.2017090028
    [7]PAN Lei, LI Li-juan, DING Ting-ting, LIU Dui. Forecasting of Short-term Power Load Based on Improved PSO Algorithm and LS-SVM[J]. Journal of Mine Automation, 2012, 38(9): 55-59.
    [8]SUN Jie, HAN Yan, DUAN Yong, CUI Bao-xia. PID Neural Network Control System of Ball Mill Based on Modified PSO Algorithm[J]. Journal of Mine Automation, 2011, 37(5): 59-62.
    [9]SU Po, CHEN Qing, . Analysis of Mine Low-voltage Leakage Protection in Situation of Great Disparity between Long and Short Lines and Big Unbalanced Current[J]. Journal of Mine Automation, 2010, 36(10): 32-35.
    [10]LIU Rui-fang, MEI Xiao-a. Nonlinear Correction of Methane Sensor Based on Least Square Support Vector Machine[J]. Journal of Mine Automation, 2009, 35(5): 8-12.
  • Cited by

    Periodical cited type(14)

    1. 谭超,闵薪宇,辛亮,孙其浩,谭继伟,欧星作. 一种基于单轴向充磁永磁环励磁的钢丝绳无损检测方法. 传感技术学报. 2024(04): 731-736 .
    2. 赵陆. 电梯钢丝绳损伤检测装置设计. 机械管理开发. 2024(12): 105-106+109 .
    3. 曹义威,张士超,陈小伟,徐光鹏,何宝林. 海洋石油钻修井钢丝绳在线监测技术研究与应用. 无损探伤. 2023(04): 30-33 .
    4. 王文庆,刘文辉,李生辉,徐午言. 基于永磁环励磁结构的钢丝绳无损检测设计. 西安邮电大学学报. 2023(05): 92-101 .
    5. 田劼,孙钢钢,李睿峰,王伟. 基于正交试验的钢丝绳探伤仪结构参数优化. 工矿自动化. 2022(09): 100-108 . 本站查看
    6. 王红尧,吴佳奇,李长恒,唐文锦,张艳林. 矿用钢丝绳损伤检测信号处理方法研究. 工矿自动化. 2021(02): 58-62 . 本站查看
    7. 窦连城,战卫侠,白晓瑞. 钢丝绳内外部断丝损伤识别. 工矿自动化. 2021(03): 83-88 . 本站查看
    8. 王红尧,田劼,张艳林,刘志宏,陈艺童. 矿用钢丝绳在线监测教学实验装置关键技术. 煤矿安全. 2021(06): 177-182 .
    9. 王锐. 参加者较少的钢丝拉伸能力验证评价方法应用. 机械研究与应用. 2021(03): 208-211 .
    10. 靳志强. 矿用提升机钢丝绳损伤检测装置的设计. 机械管理开发. 2021(08): 253-255 .
    11. 田劼,王洋洋,郭红飞,赵彩跃. 基于漏磁检测的钢丝绳探伤原理与方法研究. 煤炭工程. 2021(09): 95-100 .
    12. 王红尧,李小伟,韩亦淼,吕昕. 矿用钢丝绳损伤检测系统设计. 工矿自动化. 2020(06): 92-97 . 本站查看
    13. 张方泽. 矿用提升机制动过程与制动效果分析. 低碳世界. 2020(08): 166-167 .
    14. 窦连城,战卫侠. 钢丝绳断丝损伤漏磁场计算与仿真研究. 工矿自动化. 2020(10): 87-91 . 本站查看

    Other cited types(12)

Catalog

    Article Metrics

    Article views (234) PDF downloads (33) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return