Citation: | TIAN Fengliang, WANG Zhongxin, SUN Xiaoyu, et al. Combined prediction model of truck multi-section travel time in open-pit mine based on velocity field[J]. Journal of Mine Automation,2022,48(6):95-99, 146. DOI: 10.13272/j.issn.1671-251x.17916 |
[1] |
白润才. 露天矿卡车实时调度优化决策系统及应用效果预测研究[D]. 阜新: 辽宁工程技术大学, 2005.
BAI Runcai. Research on truck real-time dispatch optimizing decision system and forecast of applied effect in surface mine[D]. Fuxin: Liaoning Technical University, 2005.
|
[2] |
SHBAKLO S A, KRUEGER L B. A pilot application study of corridor performance indicators[C]//The Proceedings of the Sixth National Conference on Transportation Planning for Small and Medium-Sized Communities, Washington, 1998: 16-18.
|
[3] |
COWLING P,JOHANSSON M. Using real time information for effective dynamic scheduling[J]. European Journal of Operational Research,2002,139(2):230-244. DOI: 10.1016/S0377-2217(01)00355-1
|
[4] |
孟小前. 基于行程时间实时预测的露天矿调度服务研究[D]. 北京: 中国矿业大学(北京), 2014.
MENG Xiaoqian. Research on scheduling services of open-pit mine based on real-time travel time prediction[D]. Beijing: China University of Mining and Technology(Beijing), 2014.
|
[5] |
唐少虎,刘小明,陈兆盟,等. 基于计算实验的城市道路行程时间预测与建模[J]. 自动化学报,2015,41(8):1516-1527. DOI: 10.16383/j.aas.2015.c140846
TANG Shaohu,LIU Xiaoming,CHEN Zhaomeng,et al. Urban road travel time prediction and modeling via computational experiments[J]. Acta Automatica Sinica,2015,41(8):1516-1527. DOI: 10.16383/j.aas.2015.c140846
|
[6] |
VANAJAKSHI L, RILETT L R. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed[C]// Proceedings of the Intelligent Vehicles Symposium, Parma, 2004: 194-199.
|
[7] |
MEECH J,PARREIRA J. An interactive simulation model of human drivers to study autonomous haulage trucks[J]. Complex Adaptive Systems,2011,6(11):118-123.
|
[8] |
OZDEMIR B,KUMRAL M. Appraising production targets through agent-based Petri net simulation of material handling systems in open-pit mines[J]. Simulation Modelling Practice and Theory,2018,87(3):138-154.
|
[9] |
CHANDA E K,GARDINER S. A comparative study of truck cycle time prediction methods in open-pit mining[J]. Engineering,Construction and Architectural Management,2010,17(5):446-460. DOI: 10.1108/09699981011074556
|
[10] |
SUN Xiaoyu,ZHANG Hang. The use of a machine learning method to predict the real-time link travel time of open-pit trucks[J]. Mathematical Problems in Engineering,2018,4(4):1-14.
|
[11] |
ERARSLAN K. Modelling performance and retarder chart of highway trucks by cubic splines for cycle time estimation[J]. Mining Technology,2013,114:161-166.
|
[12] |
史文中. 空间数据与空间分析不确定性原理[M]. 北京: 科学出版社, 2015.
SHI Wenzhong. Uncertainty principle of spatial data and spatial analysis[M]. Beijing: Science Press, 2015.
|
[13] |
SILVESTER S A,LOWNDES I S,HARGREAVES D M. A computational study of particulate emissions from an open-pit quarry under neutral atmospheric conditions[J]. Atmospheric Environment,2009,43(40):6415-6424. DOI: 10.1016/j.atmosenv.2009.07.006
|
[14] |
TSAPAKIS I,CHENG T,BOLBOL A. Impact of weather conditions on macroscopic urban travel times[J]. Journal of Transport Geography,2013,28:204-211. DOI: 10.1016/j.jtrangeo.2012.11.003
|
[15] |
DINDARLOO S R,SIAMI-IRDEMOOSA E. Determinants of fuel consumption in mining trucks[J]. Energy,2016,112(1):232-240.
|
[16] |
MOHRI M, ROSTAMIZADEH A. Foundations of machine learning[M]. Cambridge: MIT Press, 2012.
|
[17] |
KIM S Y,UPNEJA A. Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models[J]. Economic Modelling,2014,36(1):354-362.
|
[18] |
BREIMAN L I,FRIEDMAN J H. Classification and regression trees[J]. Encyclopedia of Ecology,2015,57(3):582-588.
|
[19] |
SPOKOINY V,WILLRICH N. Bootstrap tuning in Gaussian ordered model selection[J]. The Annals of Statistics,2019,47(3):1351-1380.
|
1. |
谭超,闵薪宇,辛亮,孙其浩,谭继伟,欧星作. 一种基于单轴向充磁永磁环励磁的钢丝绳无损检测方法. 传感技术学报. 2024(04): 731-736 .
![]() | |
2. |
赵陆. 电梯钢丝绳损伤检测装置设计. 机械管理开发. 2024(12): 105-106+109 .
![]() | |
3. |
曹义威,张士超,陈小伟,徐光鹏,何宝林. 海洋石油钻修井钢丝绳在线监测技术研究与应用. 无损探伤. 2023(04): 30-33 .
![]() | |
4. |
王文庆,刘文辉,李生辉,徐午言. 基于永磁环励磁结构的钢丝绳无损检测设计. 西安邮电大学学报. 2023(05): 92-101 .
![]() | |
5. |
田劼,孙钢钢,李睿峰,王伟. 基于正交试验的钢丝绳探伤仪结构参数优化. 工矿自动化. 2022(09): 100-108 .
![]() | |
6. |
王红尧,吴佳奇,李长恒,唐文锦,张艳林. 矿用钢丝绳损伤检测信号处理方法研究. 工矿自动化. 2021(02): 58-62 .
![]() | |
7. |
窦连城,战卫侠,白晓瑞. 钢丝绳内外部断丝损伤识别. 工矿自动化. 2021(03): 83-88 .
![]() | |
8. |
王红尧,田劼,张艳林,刘志宏,陈艺童. 矿用钢丝绳在线监测教学实验装置关键技术. 煤矿安全. 2021(06): 177-182 .
![]() | |
9. |
王锐. 参加者较少的钢丝拉伸能力验证评价方法应用. 机械研究与应用. 2021(03): 208-211 .
![]() | |
10. |
靳志强. 矿用提升机钢丝绳损伤检测装置的设计. 机械管理开发. 2021(08): 253-255 .
![]() | |
11. |
田劼,王洋洋,郭红飞,赵彩跃. 基于漏磁检测的钢丝绳探伤原理与方法研究. 煤炭工程. 2021(09): 95-100 .
![]() | |
12. |
王红尧,李小伟,韩亦淼,吕昕. 矿用钢丝绳损伤检测系统设计. 工矿自动化. 2020(06): 92-97 .
![]() | |
13. |
张方泽. 矿用提升机制动过程与制动效果分析. 低碳世界. 2020(08): 166-167 .
![]() | |
14. |
窦连城,战卫侠. 钢丝绳断丝损伤漏磁场计算与仿真研究. 工矿自动化. 2020(10): 87-91 .
![]() |