WANG Xuan, WU Jiaqi, YANG Kang, et al. Human posture detection method in coal mine[J]. Journal of Mine Automation,2022,48(5):79-84. DOI: 10.13272/j.issn.1671-251x.17867
Citation: WANG Xuan, WU Jiaqi, YANG Kang, et al. Human posture detection method in coal mine[J]. Journal of Mine Automation,2022,48(5):79-84. DOI: 10.13272/j.issn.1671-251x.17867

Human posture detection method in coal mine

More Information
  • Received Date: February 15, 2022
  • Revised Date: May 10, 2022
  • Available Online: May 18, 2022
  • The posture detection of underground personnel can provide effective information for disaster warning and accident rescue. The postures of the underground personnel are complex and diverse and they are time series data. The existing human posture detection methods are difficult to process continuous related posture data. And the real-time performance is poor due to the complex algorithm and the need to configure an independent computer. In order to solve the above problems, a human posture detection method in coal mine based on improved long short term memory network(LSTM) is proposed. The pressure sensor and angle sensor are used to obtain the posture data of underground personnel, such as foot pressure, waist and leg angle, etc. The portable edge operation decision unit carried by the personnel can discriminate the posture. It can realize the real-time detection of five postures of underground personnel, such as standing, walking, bending, squatting (sitting) and lying down. In order to reduce the dimension of the original sampled data of human posture and improve the compute efficiency, LSTM is improved. The long short term memory sparse autoencoder(LSTMSA) is designed. The characteristics of the original sampled data is extracted by the sparse autoencoder(SA) to reduce the dimension, and then the human posture is detected by the LSTM. Human posture data are collected in the laboratory environment, and LSTMSA, LSTM and recursive neural network(RNN) are trained and tested respectively. The results show that under the same experimental settings and sampling data, the accuracy of LSTMSA for five kinds of human posture detection reaches more than 90%, which is close to LSTM and greater than RNN. The computing time of LSTMSA is shortened by more than 50% compared with LSTM, which meets the real-time requirements of human posture detection in coal mine.
  • [1]
    刘浩, 刘海滨, 孙宇, 等. 煤矿井下员工不安全行为智能识别系统研究[J/OL]. 煤炭学报: 1-13[2022-01-11]. DOI: 10.13225/j. cnki. jccs. 2021.0670.

    LIU Hao, LIU Haibin, SUN Yu, et al. Research on intelligent recognition system of unsafe behavior of coal mine underground employee[J/OL]. Journal of China Coal Society: 1-13 [2022-01-11]. DOI: 10.13225/j.cnki. jccs. 2021.0670.
    [2]
    BOURDEV L, MAJI S, BROX T, et al. Detecting people using mutually consistent poselet activations[C]//European Conference on Computer Vision, Marseille-France, 2010: 168-181.
    [3]
    郑莉莉,黄鲜萍,梁荣华. 基于支持向量机的人体姿态识别[J]. 浙江工业大学学报,2012,40(6):670-675,691. DOI: 10.3969/j.issn.1006-4303.2012.06.017

    ZHENG Lili,HUANG Xianping,LIANG Ronghua. Human posture recognition method based on SVM[J]. Journal of Zhejiang University of Technology,2012,40(6):670-675,691. DOI: 10.3969/j.issn.1006-4303.2012.06.017
    [4]
    黄心汉,苏豪,彭刚,等. 基于卷积神经网络的目标识别及姿态检测[J]. 华中科技大学学报(自然科学版),2017,45(10):7-11.

    HUANG Xinhan,SU Hao,PENG Gang,et al. Object identification and pose detection based on convolutional neural network[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2017,45(10):7-11.
    [5]
    许志强. 基于深度学习的实时人体姿态估计系统[D].秦皇岛:燕山大学, 2019.

    XU Zhiqiang. Real-time human posture estimation system based on deep learning study[D]. Qinhuangdao: Yanshan University, 2019.
    [6]
    钱志华,高陈强,叶盛. 采用元学习的多场景教室学生姿态检测方法[J]. 西安电子科技大学学报(自然科学版),2021,48(5):58-67.

    QIAN Zhihua,GAO Chenqiang,YE Sheng. Method for detection of a student's pose in a multi-scene classroom based on meta-learning[J]. Journal of Xidian University(Natural Science),2021,48(5):58-67.
    [7]
    SONG S K, JANG J, PARK S. A phone for human activity recognition using triaxial acceleration sensor[C]//Proceedings of the 26th IEEE International Conference on Consumer Electronics, Las Vegas, 2008: 117-124.
    [8]
    曹玉珍,蔡伟超,程旸. 基于MEMS加速度传感器的人体姿态检测技术[J]. 纳米技术与精密工程,2010,8(1):37-41. DOI: 10.3969/j.issn.1672-6030.2010.01.008

    CAO Yuzhen,CAI Weichao,CHENG Yang. Body posture detection technique based on MEMS acceleration sensor[J]. Nanotechlogy and Precision Engineering,2010,8(1):37-41. DOI: 10.3969/j.issn.1672-6030.2010.01.008
    [9]
    STAMATAKIS J,CREMERS J,MAQUET D,et al. Gait feature extraction in Parkinson's disease using low-cost accelerometers[J]. Conference of the IEEE Engineering in Medicine and Biology Society,Boston,2011:7900-7903.
    [10]
    陈超强,蒋磊,王恒. 基于SAE和LSTM的下肢外骨骼步态预测方法[J]. 计算机工程与应用,2019,55(12):110-116,154. DOI: 10.3778/j.issn.1002-8331.1811-0315

    CHEN Chaoqiang,JIANG Lei,WANG Heng. Gait prediction method of lower extremity exoskeleton based on SAE and LSTM neural network[J]. Computer Engineering and Applications,2019,55(12):110-116,154. DOI: 10.3778/j.issn.1002-8331.1811-0315
    [11]
    李海涛. 基于ARM9和RFID的井下人员定位系统研究与设计[D]. 武汉: 武汉理工大学, 2010.

    LI Haitao. Research and design of underground personnel positioning system based on ARM9 and RFID [D]. Wuhan: Wuhan University of Technology, 2010.
    [12]
    叶锦娇,温良,王红尧,等. 下井人员生命体征传感器的设计[J]. 工矿自动化,2013,39(1):52-54. DOI: 10.7526/j.issn.1671-251X.2013.01.014

    YE Jinjiao,WEN Liang,WANG Hongyao,et al. Design of vital signs sensor for coal miner[J]. Industry and Mine Automation,2013,39(1):52-54. DOI: 10.7526/j.issn.1671-251X.2013.01.014
    [13]
    罗会兰,王婵娟,卢飞. 视频行为识别综述[J]. 通信学报,2018,39(6):169-180.

    LUO Huilan,WANG Chanjuan,LU Fei. Survey of video behavior recognition[J]. Journal on Communications,2018,39(6):169-180.
    [14]
    柴铎,徐诚,何杰,等. 运用开端神经网络进行人体姿态识别[J]. 通信学报,2017,38(增刊2):122-128.

    CHAI Duo,XU Cheng,HE Jie,et al. Inception neural network for human activity recognition using wearable sensor[J]. Journal on Communications,2017,38(S2):122-128.
    [15]
    REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1127-1149.
  • Cited by

    Periodical cited type(5)

    1. 马天,姜梅,杨嘉怡,张杰慧,丁旭涵. 基于多特征融合时差网络的带式输送机区域违规行为识别. 工矿自动化. 2024(07): 115-122 . 本站查看
    2. 陈贤,周澍,张蓉. 一种井下人员乘车识别与定位方法. 煤矿安全. 2024(11): 217-221 .
    3. 丁静怡,王凌霄,袁竞峰,薛竣. 基于目标识别与姿态检测的套筒灌浆过程监测方法. 土木工程与管理学报. 2023(01): 136-144 .
    4. 胡文渊,翟雨生,贠瑞光,宋相坤,尹玉玺. 我国井下不安全行为视觉检测方法研究综述与展望. 煤矿机电. 2023(01): 1-7 .
    5. 饶天荣,潘涛,徐会军. 基于交叉注意力机制的煤矿井下不安全行为识别. 工矿自动化. 2022(10): 48-54 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (199) PDF downloads (55) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return