SUN Jiping, SHAO Zipei, LIU Yi. Visual tracking method of shearer based on compressive sensing[J]. Journal of Mine Automation, 2018, 44(3): 8-11. DOI: 10.13272/j.issn.1671-251x.17313
Citation: SUN Jiping, SHAO Zipei, LIU Yi. Visual tracking method of shearer based on compressive sensing[J]. Journal of Mine Automation, 2018, 44(3): 8-11. DOI: 10.13272/j.issn.1671-251x.17313

Visual tracking method of shearer based on compressive sensing

More Information
  • For problems of low illumination intensity, uneven illumination and high coal dust concentration in working face, a visual tracking method of shearer based on compressive sensing was proposed. The image is normalized by use of rectangular filter firstly to get feature vectors. Then compressed Haar-like feature vectors of target samples and background samples are gotten according to compressive sensing theory for building target model and training naive Bayes classifier. The target image and background image are identified by the naive Bayes classifier finally, so as to realize dynamic tracking of shearer. The experimental result shows that the method can track shearer effectively when the shearer is moving or covered in environment of uneven and varied illumination, and average tracking frame rate is 22 frames per second.
  • Related Articles

    [1]SHANGGUAN Xingchi, ZHANG Xiaoliang, LIU Chao, SHI Hui, WANG Jiayu. Research on equipment fault diagnosis based on improved feature extraction algorithm and capsule network[J]. Journal of Mine Automation, 2024, 50(S1): 146-150.
    [2]CHEN Jianhua, MA Bao, WANG Meng. A method for simplifying surface point cloud data of coal mine roadways based on secondary feature extraction[J]. Journal of Mine Automation, 2023, 49(12): 114-120. DOI: 10.13272/j.issn.1671-251x.2023050029
    [3]ZHANG Meng, MIAO Changyun, MENG Deju. Research on a bearing early fault features extraction method[J]. Journal of Mine Automation, 2020, 46(4): 85-90. DOI: 10.13272/j.issn.1671-251x.2019090020
    [4]XU Zhiming, TIAN Zijian, WANG Wenqing, LIU Zhenzhen, LIU Ting, HUANG Lei. Region discretization mine target positioning method based on compressed sensing[J]. Journal of Mine Automation, 2018, 44(8): 67-70. DOI: 10.13272/j.issn.1671-251x.2018020005
    [5]SUN Jiping, YANG Kun. A coal-rock image feature extraction and recognition method[J]. Journal of Mine Automation, 2017, 43(5): 1-5. DOI: 10.13272/j.issn.1671-251x.2017.05.001
    [6]YIN Zhu, HUANG Yourui, CHEN Zhenping. Compressed sensing image processing algorithm of underground coal mine[J]. Journal of Mine Automation, 2016, 42(11): 38-41. DOI: 10.13272/j.issn.1671-251x.2016.11.009
    [7]HUANG Yu, ZHANG Yingjun, PAN Lihu. Otherness feature extraction method for underground image based on Shearlet transform[J]. Journal of Mine Automation, 2016, 42(3): 64-68. DOI: 10.13272/j.issn.1671-251x.2016.03.015
    [8]WU Yunxia, ZHANG Haopeng, DU Dongbi. Feature extraction method for human ear image and its application in miner identificatio[J]. Journal of Mine Automation, 2015, 41(11): 30-34. DOI: 10.13272/j.issn.1671-251x.2015.11.008
    [9]YANG Lei, HUANG Yourui, TANG Chaoli, QU Liguo, CHEN Zhenping, HAN Tao. An image compression method for coal mine undergroud[J]. Journal of Mine Automation, 2015, 41(8): 82-84. DOI: 10.13272/j.issn.1671-251x.2015.08.020
    [10]CHENG Ting-ting, WANG Hong-dong, DING Lei. Research of face recognition based on null space kernel discriminant analysis[J]. Journal of Mine Automation, 2013, 39(12): 86-90. DOI: 10.7526/j.issn.1671-251X.2013.12.021
  • Cited by

    Periodical cited type(4)

    1. 刘毅,庞大为,田煜. 基于改进KCF的多目标人员检测与动态跟踪方法. 工矿自动化. 2023(11): 129-137 . 本站查看
    2. 周国慧,储婷婷. 采煤机视频监控系统设计. 电子元器件与信息技术. 2021(04): 27-28 .
    3. 宋强,张颖. 人脸识别视频压缩感知跟踪算法. 辽宁科技大学学报. 2021(05): 371-378 .
    4. 仇男豪,曹杰,马俊杰,韩玉洁. 改进的Camshift与Kalman滤波联合跟踪算法. 电子设计工程. 2020(14): 11-15+20 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (84) PDF downloads (14) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return