LEI Zhipeng, LI Wei, HE Qinghui, et al. Study on evaluation method of insulation performance of mine cable based on dielectric response method[J]. Journal of Mine Automation,2023,49(1):46-55. DOI: 10.13272/j.issn.1671-251x.18047
Citation: LEI Zhipeng, LI Wei, HE Qinghui, et al. Study on evaluation method of insulation performance of mine cable based on dielectric response method[J]. Journal of Mine Automation,2023,49(1):46-55. DOI: 10.13272/j.issn.1671-251x.18047

Study on evaluation method of insulation performance of mine cable based on dielectric response method

More Information
  • Received Date: October 17, 2022
  • Revised Date: December 29, 2022
  • Available Online: January 16, 2023
  • The high voltage cable used in mine is affected by many factors, such as electricity, heat and machinery stress. These factors accelerate insulation aging and easily lead to cable leakage, short circuit or discharge. At present, the dielectric response method is introduced into analysis, evaluation and diagnosis of insulation performance and aging state of mine cables. In view of problems of insulation performance and aging state evaluation of mine cables, the commonly used ethylene propylene diene monomer (EPDM) insulated mobile flexible cable for mining is taken as the research object. The basic principles and typical characteristics of recovery voltage method, polarization/depolarization current method and frequency-domain dielectric spectroscopy method in dielectric response method are summarized. The advantages and disadvantages of the three methods are compared. The characteristics of cable insulation performance evaluation based on the dielectric response model are introduced. The characteristics include the aging factor extracted by the extended Debye model, relaxation characteristics extracted by the modified dielectric relaxation model and dielectric loss integral spectrum. The application of the dielectric response method in the evaluation of the insulation performance of mine cables is summarized from the following aspects. The aspects include the identification of trace corrosion degree of mine cables based on recovery voltage method and polarization/depolarization current method. The aspects include the evaluation of EPDM insulation multi-stress aging state based on polarization/depolarization current method and isothermal relaxation current, based on dielectric relaxation model and based on dielectric loss integral value. The existing online monitoring technology for the evaluation of the insulation performance of mine cables based on the dielectric response method cannot adapt to the working conditions of coal mines. The evaluation data is insufficient, and the relationship between the insulation deterioration degree and the characteristic quantity is unknown. In order to solve the above problems, this paper puts forward that the research should focus on two key technologies, namely, cable insulation state perception and the relationship between insulation degradation degree and characteristic quantity construction.
  • [1]
    LIN Lingyan,LIN Chen,GENG Pulong,et al. Aging life evaluation of coal mining flexible EPR cables under multi-stresses[J]. IEEE Access,2020,8:53539-53546. DOI: 10.1109/ACCESS.2020.2981359
    [2]
    王思宇,刘洋,雷志鹏,等. 基于极化电流的挤压力和热应力作用下电缆用乙丙橡胶绝缘性能的研究[J]. 绝缘材料,2022,55(4):56-61. DOI: 10.16790/j.cnki.1009-9239.im.2022.04.008

    WANG Siyu,LIU Yang,LEI Zhipeng,et al. Research on insulation performance of EPDM for cables under extrusion pressure and thermal stress based on polarization current[J]. Insulating Materials,2022,55(4):56-61. DOI: 10.16790/j.cnki.1009-9239.im.2022.04.008
    [3]
    雷志鹏. 乙丙橡胶绝缘介电性能及其气隙和沿面放电机理的研究[D]. 太原: 太原理工大学, 2015.

    LEI Zhipeng. Dielectric properties of EPR and partial discharge mechanism occurring in cavities and along surface of EPR[D]. Taiyuan: Taiyuan University of Technology, 2015.
    [4]
    JONSCHER A K. The 'universal' dielectric response. I[J]. IEEE Electrical Insulation Magazine,1990,6(2):16-22. DOI: 10.1109/57.50801
    [5]
    LEI Zhipeng,SONG Jiancheng,GENG Pulong,et al. Influence of temperature on dielectric properties of EPR and partial discharge behavior of spherical cavity in EPR insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2015,22(6):3488-3497. DOI: 10.1109/TDEI.2015.004942
    [6]
    冯晨. 基于绝缘电阻的电缆用乙丙橡胶绝缘表面电痕故障诊断方法研究[D]. 太原: 太原理工大学, 2016.

    FENG Chen. Study on surface electrical tracking fault diagnosis of the cable used ethylene propylene rubber based on insulation resistance[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [7]
    SIMMONS J G,TAM M C. Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions[J]. Physical Review B,1973,7(8):3706-3713. DOI: 10.1103/PhysRevB.7.3706
    [8]
    高树国,朱永华,吴长顺,等. 等温松弛法在三元乙丙橡胶绝缘电缆连接器的老化评估中的应用研究[J]. 电工电能新技术,2015,34(5):76-80. DOI: 10.3969/j.issn.1003-3076.2015.05.014

    GAO Shuguo,ZHU Yonghua,WU Changshun,et al. Application of isothermal relaxation to aging assessment of EPDM rubber insulated cable connectors[J]. Advanced Technology of Electrical Engineering and Energy,2015,34(5):76-80. DOI: 10.3969/j.issn.1003-3076.2015.05.014
    [9]
    朱永华,高小庆,杨娟娟,等. 等温松弛电流法在高压交联聚乙烯绝缘交流电缆状态评估中的应用[J]. 高电压技术,2016,42(2):513-521. DOI: 10.13336/j.1003-6520.hve.2016.02.023

    ZHU Yonghua,GAO Xiaoqing,YANG Juanjuan,et al. Application of isothermal relaxation current technique in condition assessment for XLPE HVAC cables[J]. High Voltage Engineering,2016,42(2):513-521. DOI: 10.13336/j.1003-6520.hve.2016.02.023
    [10]
    SHAYEGANI A A,GOCKENBACH E,BORSI H,et al. Investigation on the transformation of time domain spectroscopy data to frequency domain data for impregnated pressboard to reduce measurement time[J]. Electrical Engineering,2006,89:11-20. DOI: 10.1007/s00202-005-0316-0
    [11]
    雷志鹏,冯晨,宋建成,等. 乙丙橡胶绝缘的表面击穿与沿面放电特性[J]. 高电压技术,2016,42(12):3924-3933. DOI: 10.13336/j.1003-6520.hve.20161128029

    LEI Zhipeng,FENG Chen,SONG Jiancheng,et al. Surface breakdown and surface discharge characteristics of ethylene propylene rubber insulation[J]. High Voltage Engineering,2016,42(12):3924-3933. DOI: 10.13336/j.1003-6520.hve.20161128029
    [12]
    冯晨,雷志鹏,任鸿秋,等. 乙丙橡胶表面电痕腐蚀对极化−去极化电流的影响[J]. 高压电器,2017,53(10):136-141. DOI: 10.13296/j.1001-1609.hva.2017.10.023

    FENG Chen,LEI Zhipeng,REN Hongqiu,et al. Effect of surface electrical tracking of ethylene propylene rubber on polarization-depolarization current[J]. High Voltage Apparatus,2017,53(10):136-141. DOI: 10.13296/j.1001-1609.hva.2017.10.023
    [13]
    王少飞,雷志鹏,宋建成,等. 乙丙橡胶表面电痕腐蚀对极化/去极化电流的影响[J]. 高压电器,2019,55(6):99-104.

    WANG Shaofei,LEI Zhipeng,SONG Jiancheng,et al. Influence of electrical trace on polarization/depolarization current of ethylene-propylene rubber[J]. High Voltage Apparatus,2019,55(6):99-104.
    [14]
    MEN Rujia,LEI Zhipeng,SONG Jiancheng,et al. Effect of thermal aging on space charge in ethylene propylene rubber at DC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(3):792-800. DOI: 10.1109/TDEI.2018.007752
    [15]
    徐航,杜伯学,苏金刚. 拉伸状态下聚丙烯/聚烯烃弹性体共混物的空间电荷和陷阱分布特性[J]. 高电压技术,2017,43(2):453-459.

    XU Hang,DU Boxue,SU Jingang. Space charge behaviors and trap distributions of polypropylene/polyolefin elastomer blend under different elongation ratios[J]. High Voltage Engineering,2017,43(2):453-459.
    [16]
    林晨,吝伶艳,雷志鹏,等. 基于PDC的多应力老化乙丙橡胶电缆绝缘状态评估[J]. 绝缘材料,2020,53(1):70-75.

    LIN Chen,LIN Lingyan,LEI Zhipeng,et al. State evaluation of multi-stress aged EPR cable insulation based on PDC[J]. Insulating Materials,2020,53(1):70-75.
    [17]
    KREMER F, SCHÖNHALS A. Broadband dielectric spectroscopy[M]. Springer, 2003.
    [18]
    王业,李蔚,雷志鹏,等. 挤压应力和热应力下电缆绝缘用三元乙丙橡胶的介电频谱分析[J]. 绝缘材料,2021,54(12):94-100.

    WANG Ye,LI Wei,LEI Zhipeng,et al. Dielectric spectroscopy analysis of ethylene propylene diene monomer for cable insulation under force and thermal stress[J]. Insulating Materials,2021,54(12):94-100.
    [19]
    曾君湘,宋建成,雷志鹏,等. 针−板电极下交联聚乙烯电缆绝缘中电树枝生长规律的研究[J]. 高压电器,2019,55(2):156-163. DOI: 10.13296/j.1001-1609.hva.2019.02.022

    ZENG Junxiang,SONG Jiancheng,LEI Zhipeng,et al. Research on the growth dynamics of electrical trees in the insulation of XLPE cables under the needle-plane electrode[J]. High Voltage Apparatus,2019,55(2):156-163. DOI: 10.13296/j.1001-1609.hva.2019.02.022
    [20]
    周冰. 煤矿高压电缆局部放电脉冲信号去噪研究[J]. 工矿自动化,2017,43(12):22-26. DOI: 10.13272/j.issn.1671-251x.2017.12.005

    ZHOU Bing. Research on partial discharge pulse signal denoising of high voltage cable in coal mine[J]. Industry and Mine Automation,2017,43(12):22-26. DOI: 10.13272/j.issn.1671-251x.2017.12.005
    [21]
    张敏,武兴华,耿蒲龙,等. 矿井供电电缆绝缘电阻不对称对交流杂散电流分布的影响[J]. 工矿自动化,2019,45(2):65-69. DOI: 10.13272/j.issn.1671-251x.2018080001

    ZHANG Min,WU Xinghua,GENG Pulong,et al. Influence of insulation resistance asymmetry of mine power cable on AC stray current distribution[J]. Industry and Mine Automation,2019,45(2):65-69. DOI: 10.13272/j.issn.1671-251x.2018080001
    [22]
    王永升,李晓娜,赵国栋,等. 煤矿高压电缆绝缘在线监测研究[J]. 工矿自动化,2016,42(6):65-69. DOI: 10.13272/j.issn.1671-251x.2016.06.016

    WANG Yongsheng,LI Xiaona,ZHAO Guodong,et al. Research of online monitoring of high voltage cable insulation degradation of coal mine[J]. Industry and Mine Automation,2016,42(6):65-69. DOI: 10.13272/j.issn.1671-251x.2016.06.016
    [23]
    孙晓斐. 矿用高压电缆绝缘特性在线评估系统的开发[D]. 太原: 太原理工大学, 2013.

    SUN Xiaofei. Development of on-line assessment system of insulation characteristics for high voltage cables in coal mine[D]. Taiyuan: Taiyuan University of Technology, 2013.
    [24]
    雷志鹏,宋建成,孙晓斐,等. 矿用高压电缆局部放电测量传感器的研究及应用[J]. 煤炭学报,2013,38(12):2265-2271. DOI: 10.13225/j.cnki.jccs.2013.12.029

    LEI Zhipeng,SONG Jiancheng,SUN Xiaofei,et al. Research and application of high-frequency current transformers for partial discharge measurement of mining cables[J]. Journal of China Coal Society,2013,38(12):2265-2271. DOI: 10.13225/j.cnki.jccs.2013.12.029
    [25]
    李玮,吝伶艳,康爱亮,等. 温度和湿度对高压电动机定子绕组相间放电的影响[J]. 绝缘材料,2019,52(9):58-64. DOI: 10.16790/j.cnki.1009-9239.im.2019.09.011

    LI Wei,LIN Lingyan,KANG Ailiang,et al. Effects of temperature and humidity on phase-to-phase discharge of stator winding for high-voltage motor[J]. Insulating Materials,2019,52(9):58-64. DOI: 10.16790/j.cnki.1009-9239.im.2019.09.011
    [26]
    万志强,曹鹏刚,宋建成,等. 矿用隔爆型干式变压器绕组局部放电对温升的影响[J]. 工矿自动化,2018,44(5):36-41. DOI: 10.13272/j.issn.1671-251x.2017100006

    WAN Zhiqiang,CAO Penggang,SONG Jiancheng,et al. Influence of partial discharge on temperature rise of windings of mine-used flameproof dry-type transformer[J]. Industry and Mine Automation,2018,44(5):36-41. DOI: 10.13272/j.issn.1671-251x.2017100006
    [27]
    孙晓斐,宋建成,雷志鹏,等. 基于电桥法的煤矿高压电缆绝缘电阻在线监测[J]. 煤矿安全,2014,45(2):82-85. DOI: 10.13347/j.cnki.mkaq.2014.02.026

    SUN Xiaofei,SONG Jiancheng,LEI Zhipeng,et al. Insulation resistance on-line detection of coal mine high voltage cable based on DC bridge method[J]. Safety in Coal Mines,2014,45(2):82-85. DOI: 10.13347/j.cnki.mkaq.2014.02.026
    [28]
    曹俊平,蒋愉宽,王少华,等. XLPE电力电缆接头缺陷检测关键技术分析与展望[J]. 高压电器,2018,54(7):87-97. DOI: 10.13296/j.1001-1609.hva.2018.07.010

    CAO Junping,JIANG Yukuan,WANG Shaohua,et al. Analysis and prospect of defect detection key technology for XLPE power cable joints[J]. High Voltage Apparatus,2018,54(7):87-97. DOI: 10.13296/j.1001-1609.hva.2018.07.010
    [29]
    赵瑞雪,门汝佳,徐晓晓,等. 纳米SiO2添加对乙丙橡胶相对介电常数和电导特性的影响[J]. 绝缘材料,2021,54(1):18-24.

    ZHAO Ruixue,MEN Rujia,XU Xiaoxiao,et al. Effect of nano-SiO2 addition on relative permittivity and conduction characteristic of ethylene propylene diene monomer[J]. Insulating Materials,2021,54(1):18-24.
    [30]
    MEN Rujia,LEI Zhipeng,SONG Jiancheng,et al. Effect of thermal ageing on space charge in ethylene propylene rubber at DC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(3):792-800. DOI: 10.1109/TDEI.2018.007752
    [31]
    门汝佳,雷志鹏,吝伶艳,等. 矿用乙丙橡胶电缆绝缘电热老化状态评估[J]. 工矿自动化,2019,45(4):67-71. DOI: 10.13272/j.issn.1671-251x.2019010038

    MEN Rujia,LEI Zhipeng,LIN Lingyan,et al. Insulation state assessment of mine-used ethylene propylene rubber cable under electro-thermal aging[J]. Industry and Mine Automation,2019,45(4):67-71. DOI: 10.13272/j.issn.1671-251x.2019010038
    [32]
    王少飞,雷志鹏,宋建成,等. 温度对乙丙橡胶绝缘表面沿面放电特征的影响[J]. 绝缘材料,2018,51(7):41-48. DOI: 10.16790/j.cnki.1009-9239.im.2018.07.008

    WANG Shaofei,LEI Zhipeng,SONG Jiancheng,et al. Effects of temperature on surface discharge characteristics of ethylene propylene rubber insulation[J]. Insulating Materials,2018,51(7):41-48. DOI: 10.16790/j.cnki.1009-9239.im.2018.07.008
    [33]
    HU Hao,JIA Zhidong,WANG Xilin. Aging mechanism of silicone rubber under thermal-tensile coupling effect[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2022,29(1):185-192. DOI: 10.1109/TDEI.2022.3146543
    [34]
    施江吉,孙文杰,马梓淇,等. 预拉伸对介电弹性体复合材料介电性能和驱动性能的影响研究[J]. 绝缘材料,2016,49(9):66-71. DOI: 10.16790/j.cnki.1009-9239.im.2016.09.013

    SHI Jiangji,SUN Wenjie,MA Ziqi,et al. Influence of pre-stretch on dielectric property and actuating properties of dielectric elastomer composite[J]. Insulating Materials,2016,49(9):66-71. DOI: 10.16790/j.cnki.1009-9239.im.2016.09.013
    [35]
    XU Deng,SRIDHAR V,MAHAPATRA S P,et al. Dielectri properties of exfoliated graphite reinforced flouroelastomer composites[J]. Journal of Applied Polymer Science,2009,111(3):1358-1368. DOI: 10.1002/app.29183
    [36]
    刘亚东,陈思,丛子涵,等. 电力装备行业数字孪生关键技术与应用展望[J]. 高电压技术,2021,47(5):1539-1554. DOI: 10.13336/j.1003-6520.hve.20210194

    LIU Yadong,CHEN Si,CONG Zihan,et al. Key technology and application prospect of digital twin in power equipment industry[J]. High Voltage Engineering,2021,47(5):1539-1554. DOI: 10.13336/j.1003-6520.hve.20210194
    [37]
    马小平,杨雪苗,胡延军,等. 人工智能技术在矿山智能化建设中的应用初探[J]. 工矿自动化,2020,46(5):8-14. DOI: 10.13272/j.issn.1671-251x.17593

    MA Xiaoping,YANG Xuemiao,HU Yanjun,et al. Preliminary study on application of artificial intelligence technology in mine intelligent construction[J]. Industry and Mine Automation,2020,46(5):8-14. DOI: 10.13272/j.issn.1671-251x.17593
  • Related Articles

    [1]WU Jun, LIU Hanwe. Positioning method of shearer based on strapdown inertial navigation system[J]. Journal of Mine Automation, 2021, 47(S2): 19-22.
    [2]TIAN Jie, YIN Xiaoqi, WEN Yicheng. Method of cutting trajectory planning of roadheader based on hybrid IWO-PSO algorithm[J]. Journal of Mine Automation, 2021, 47(12): 55-61. DOI: 10.13272/j.issn.1671-251x.2021050018
    [3]REN Xiaohong, WAN Hong, YU Xiao, DING Enjie. Open-circuit fault diagnosis of three-level inverter based on Park transformatio[J]. Journal of Mine Automation, 2020, 46(5): 82-86. DOI: 10.13272/j.issn.1671-251x.17523
    [4]TIAN Yuan. Inertial navigation positioning method of roadheader based on zero-velocity update[J]. Journal of Mine Automation, 2019, 45(8): 70-73. DOI: 10.13272/j.issn.1671-251x.2019010033
    [5]DU Jingyi, GUO Jinbao, ZHANG Bo. Inertial navigation and positioning system for underground driverless trai[J]. Journal of Mine Automation, 2018, 44(9): 5-9. DOI: 10.13272/j.issn.1671-251x.2018040022
    [6]ZHANG Shouxiang, LI Sen, SONG Lailiang. Positioning of coal mining equipments based on inertial navigation and odometer[J]. Journal of Mine Automation, 2018, 44(5): 52-57. DOI: 10.13272/j.issn.1671-251x.2018010042
    [7]TIAN Yuan. Present situation and development direction of navigation technology of boom-type roadheader[J]. Journal of Mine Automation, 2017, 43(8): 37-43. DOI: 10.13272/j.issn.1671-251x.2017.08.008
    [8]LI Ming, REN Fei, ZHANG Zhen, ZHANG Wei. Double-layer PLC Monitoring and Control System Based on GSM and Configuratio[J]. Journal of Mine Automation, 2012, 38(6): 90-93.
    [9]HU Guo-si, ZHENG Ying-ping. Using Method of Three Peak Values to Determine Balancing Position of Gyroscope Inclinometer[J]. Journal of Mine Automation, 2008, 34(2): 84-86.
    [10]ZHAO Shao-gang, GAO Sheng. Study on Nonlinear PID Control for Three-level Rectifier[J]. Journal of Mine Automation, 2004, 30(3): 7-9.

Catalog

    Article Metrics

    Article views (1339) PDF downloads (35) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return