WU Yaqin, LI Huijun, XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Journal of Mine Automation, 2020, 46(4): 46-53. DOI: 10.13272/j.issn.1671-251x.2019110018
Citation: WU Yaqin, LI Huijun, XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Journal of Mine Automation, 2020, 46(4): 46-53. DOI: 10.13272/j.issn.1671-251x.2019110018

Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM

More Information
  • In view of problems of coal and gas outburst prediction algorithm based on support vector machine(SVM) that prediction accuracy and reliability are not high, classification of nonlinear data is not considered when selecting kernel function, and extraction effect of influence factors of coal and gas outburst with nonlinear distribution is poor, a coal and gas outburst prediction algorithm which combines improved particle swarm optimization (IPSO) algorithm with Powell algorithm(IPSO-Powell) to optimize SVM was proposed. Firstly, main control factors of coal and gas outburst, namely initial velocity of gas emission, gas pressure, mining depth, gas content and failure type of coal body is extracted through grey correlation analysis and used as input samples of the algorithm. Then, IPSO algorithm is used to improve precocious convergence of particle swarm optimization (PSO), and Powell algorithm is used to search the local optimal solution, the penalty coefficient and Gaussian kernel function parameters of the SVM algorithm are optimized, the optimal parameter combination of SVM is obtained. Finally, the main control factors of coal and gas outburst are input to the SVM for classification , and compared with the actual test set classification results to achieve coal and gas outburst prediction. The simulation results show that compared with the SVM algorithm, GA-SVM algorithm and PSO-SVM algorithm, the application of IPSO-Powell optimized SVM algorithm for coal and gas outburst prediction has higher prediction accuracy, and improves the computational efficiency of the SVM solution process, which can meet the accuracy and reliability requirement of coal and gas outburst prediction with an accuracy rate of 95.9%.
  • Related Articles

    [1]JIN Bing, ZHANG Lang, LI Wei, ZHENG Yi, LIU Yanqing, ZHANG Yibin. Rapid prediction algorithm for flow field in fully mechanized excavation face based on POD and machine learning[J]. Journal of Mine Automation, 2024, 50(10): 97-104, 119. DOI: 10.13272/j.issn.1671-251x.2024080090
    [2]LI Tieniu, HU Binxin, LI Huakun, GENG Wencheng, HAO Pengcheng, JI Xubo, SUN Zengrong, ZHU Feng, ZHANG Hua, YANG Chengquan. Automatic picking method of microseismic first arrival time based on improved support vector machine[J]. Journal of Mine Automation, 2023, 49(3): 63-69. DOI: 10.13272/j.issn.1671-251x.2022050081
    [3]SHEN Shuce, SHI Yannan, SONG Jianfeng, REN Ze, WANG Yiying, WANG Hanqiu. Research on trajectory planning of drill rig manipulator based on improved particle swarm optimization[J]. Journal of Mine Automation, 2022, 48(3): 71-77, 85. DOI: 10.13272/j.issn.1671-251x.2021090049
    [4]LAN Shihao, HAN Tao, HUANG Yourui, XU Shanyong. Research on dynamic window algorithm of mine mobile robot based on membrane computing and particle swarm optimizatio[J]. Journal of Mine Automation, 2020, 46(11): 46-53. DOI: 10.13272/j.issn.1671 -251x.2020060062
    [5]FENG Shuo, XIE Tingchuan, KANG Jing, LI Jianliang. Path planning of mine search and rescue robot based on two-particle swarm optimization algorithm[J]. Journal of Mine Automation, 2020, 46(1): 65-71. DOI: 10.13272/j.issn.1671-251x.2019050092
    [6]YE Manyuan, HUANG Kaifeng. Power balance control strategy for staircase modulation based on improved particle swarm optimization algorithm[J]. Journal of Mine Automation, 2015, 41(9): 57-62. DOI: 10.13272/j.issn.1671-251x.2015.09.015
    [7]WANG Jian-jun, WANG Shi-ying, LEI Meng. Application of Particle Swarm Optimization Algorithm in Prediction of Coal Calorific Value[J]. Journal of Mine Automation, 2012, 38(5): 50-53.
    [8]AN Feng-shua, . Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm[J]. Journal of Mine Automation, 2010, 36(5): 54-57.
    [9]ZHOU Xin, MIAO Chang-yun, LI Yan-feng, WU Zhi-gang. Optimization of CS-ACELP Voice Code Algorithm and Its Implementation on DSP[J]. Journal of Mine Automation, 2009, 35(12): 69-72.
    [10]PENG Juan, CHENG Jian, HAN Fang-fang, QUE Sheng-li, SONG Wan-bao. Multi-target Optimization for Automatic Blending Coal System Based on PSO Algorithm[J]. Journal of Mine Automation, 2009, 35(10): 25-28.
  • Cited by

    Periodical cited type(12)

    1. 高翼飞,张晓航,畅明,葛帅帅,陈伟. 基于时空图卷积网络的瓦斯体积分数预警效果研究. 中国安全生产科学技术. 2024(01): 58-64 .
    2. 薛生,郑晓亮,袁亮,来文豪,张玉婷. 基于机器学习的煤与瓦斯突出预测研究进展及展望. 煤炭学报. 2024(02): 664-694 .
    3. 李宛桐,夏方方,朱旖旎,赵胜磊,杨紫云,王金鑫. 基于机器学习的煤与瓦斯突出危险性评估和预警研究进展. 中国煤炭. 2024(07): 52-62 .
    4. 赵国强,王留洋,刘雨竹,卢万杰,王志中. 瓦斯突出等级预测模型. 辽宁工程技术大学学报(自然科学版). 2023(01): 32-39 .
    5. 秦岩,盛武. 基于D-S证据理论和贝叶斯网络的煤与瓦斯突出事故致因研究. 煤矿安全. 2023(05): 153-160 .
    6. 李燕,南新元,蔺万科. 煤与瓦斯突出危险性预测. 工矿自动化. 2022(03): 99-106 . 本站查看
    7. 范京道,黄玉鑫,闫振国,李川,王春林,贺雁鹏. ARIMA-SVM组合模型驱动下的瓦斯浓度预测研究. 工矿自动化. 2022(09): 134-139 . 本站查看
    8. 张婧. 多源数据融合的矿井通风瓦斯灾害预警平台. 煤炭技术. 2022(10): 237-239 .
    9. 薛峰,李希建,徐恩宇. 基于GA-SVM耦合模型的煤与瓦斯突出危险性预测. 矿业工程研究. 2022(03): 39-44 .
    10. 赵帅. 基于WOA-KELM煤与瓦斯突出预测. 科技经济导刊. 2021(01): 58-59 .
    11. 杨凯帆,黄婧,谢枭,王若昕,沈丹青,何丽娜,陈汝科. 基于最小二乘支持向量机的短期负荷预测. 电工材料. 2021(01): 51-53 .
    12. 雷思友,刘洁,方信. 煤与瓦斯突出影响因素综合评价研究——基于改进熵权法+灰色系统关联法的研究. 煤. 2021(07): 21-24+56 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (67) PDF downloads (15) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return