Abstract:
The type, surface texture, metamorphic degree, and developmental stage of coal and gangue significantly influence their emissivity. Accurate settings for emissivity parameters are essential for infrared temperature measurements and the identification of coal and gangue in infrared images. This study proposed a method for measuring the emissivity of coal and gangue based on the matching method. The approach integrated surface thermocouples with infrared thermography to assess emissivity. Samples were uniformly heated in a closed electric furnace, and once the temperature stabilized, a surface thermocouple measured the actual temperature of a selected area (denoted as
t1). Concurrently, the infrared thermography system measured the temperature of the same area (denoted as
t2). The emissivity of the infrared thermography system was calibrated until
t2 equaled
t1. At this point, the calculated emissivity reflected the true emissivity of the coal and gangue at that temperature. The experimental results indicated that: ① Under isothermal conditions, greater surface roughness of coal and gangue correlated with higher emissivity values, suggesting that surface roughness is a fundamental factor restricting the emissivity of these materials. ② The emissivity of four different types of coal and gangue decreased with increasing temperature, following a power function, with the fitting function's correlation coefficient (
R2) exceeding 0.98, thereby confirming the feasibility of the matching method for measuring emissivity. ③ The inverse method revealed that the error rates between the measured and theoretical values under varying temperature conditions were all below 3%, validating the accuracy of the measured emissivity of coal and gangue.