基于PSO−ELM的综采工作面液压支架姿态监测方法

Attitude monitoring method for hydraulic support in fully mechanized working face based on PSO-ELM

  • 摘要: 针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液压支架顶梁支护姿态实时信息,对采集到的数据进行预处理,将处理后的数据输入PSO−ELM误差补偿模型中,得到解算误差预测值;同时通过卡尔曼滤波融合进行液压支架姿态解算,得到解算值;再用误差预测值对解算值进行误差补偿,从而求得更加准确的顶梁支护姿态数据。该方法只考虑加速度和角速度数据与解算误差的关系,不依赖具体的物理模型,可有效降低姿态解算累计误差。实验结果表明:液压支架顶梁俯仰角平均绝对误差由补偿前的1.420 8°减少到0.058 0°,且误差曲线具有良好的收敛性,验证了所提方法可持续稳定地监测液压支架的支护姿态。

     

    Abstract: In response to the problems of cumulative errors and inaccurate correction results in the attitude calculation method of hydraulic supports based on inertial measurement units, a fully mechanized working face hydraulic support attitude monitoring method based on particle swarm optimization (PSO) - extreme learning machine (ELM) is proposed. Using the pitch angle of the hydraulic support top beam as the monitoring object, a tilt sensor and gyroscope are used to collect real-time information on the support attitude of the hydraulic support top beam. The collected data is preprocessed and input into the PSO-ELM error compensation model to obtain the predicted solution error. At the same time, the hydraulic support attitude is calculated through Kalman filtering fusion to obtain the calculated value. Then the method uses the error prediction value to compensate for the error in the calculated value, in order to obtain more accurate data on the top beam support attitude. This method only considers the relationship between acceleration and angular velocity data and solution errors, without relying on specific physical models. It can effectively reduce the cumulative error of attitude solution. The experimental results show that the average absolute error of the pitch angle of the top beam of the hydraulic support has been reduced from 1.420 8° before compensation to 0.058 0°. The error curve has good convergence, verifying that the proposed method can sustainably and stably monitor the support attitude of the hydraulic support.

     

/

返回文章
返回