Research status and development trend of visual processing technology for fully mechanized excavation systems
-
摘要: 机器视觉技术具有非接触测量、获取信息量大、数据处理能力强等优点,将其应用于综掘工作面,对于提高综掘工作效率、保障人员设备安全、减少事故发生具有重要意义。综述了近年来视觉处理技术在煤矿综掘系统中的具体应用与发展情况,依据综掘工作面的任务分工,结合具体实际案例,重点分析了机器视觉技术在视觉检测与定位、安全监测与事故预防、装备自动化与智能化等方面的应用。通过分析不同应用场景中各类视觉检测系统的结构与检测原理,明确了视觉处理技术在综掘工作面工程应用中的技术性能、工作流程及优缺点。分析了视觉技术在综掘工作面应用中存在的挑战,包括环境适应性问题、成像视野范围较窄、智能算法的鲁棒性和可靠性尚待提高等。指出多传感器信息融合技术、设备群协同控制技术与数字孪生驱动远程监控技术是基于机器视觉的煤矿智能化装备体系未来需要重点发展的新方向。Abstract: Machine vision technology has the advantages of non-contact measurement, large amount of information acquisition, and strong data processing capability. Applying it to fully mechanized excavation faces is of great significance for improving the efficiency of fully mechanized excavation work, ensuring the safety of personnel and equipment, and reducing accidents. This article summarizes the specific application and development of visual processing technology in coal mine fully mechanized excavation systems in recent years. Based on the task division of fully mechanized excavation working faces and combined with specific practical cases, this paper focuses on the analysis of the application of machine vision technology in visual inspection and positioning, safety monitoring and accident prevention, and equipment automation and intelligence. By analyzing the structures and detection principles of various visual detection systems in different application scenarios, the technical performance, workflow, and advantages and disadvantages of visual processing technology in the application of fully mechanized excavation face engineering are clarified. This study analyzes the challenges of visual technology in the application of fully mechanized excavation face, including environmental adaptability issues, narrow imaging field of view, and the need to improve the robustness and reliability of intelligent algorithms. It is pointed out that multi-sensor information fusion technology, equipment group cooperative control technology and digital twin-driven remote monitoring technology are the new directions that need to be focused on in the future development of the intelligent equipment system of coal mine based on machine vision.
-
表 1 各类视觉传感器的工作原理与常见应用场景
Table 1. Working principles and common application scenarios of various visual sensors
视觉传感器 基本原理 优势 劣势 实物 综掘工作面应用 单目视觉系统 小孔成像,利用尺度不变性确定深度 结构简单、成本低、便于标定和识别 通过单张图片无法确定物体的真实大小
KBA127矿用隔
爆型摄像仪位姿检测[4]、目标识别[5]、参数检测[6]、环境监测[7]、设备状态检测[8]等 双目视觉系统 双光热像仪 基于红外热辐射原理,可同时获取场景的可见光信息和温度信息 能见度不受限制、宽波段测量 分辨率有限、成本较高
YRH600B矿用
防爆热像仪人员安全监测[9]、设备状态监测[10]、环境安全评估[11]等 立体视觉相机 由2个单目相机组成,利用三角测量原理估计像素空间坐标 可获取深度信息、基线距越大量程越远 工作视场小、配置与标定复杂、实时性差
STEEReoCAM
立体相机位姿检测[12]、参数测量[13]、巷道三维重建[14]等 多目视觉系统 由多个单目相机从多视点获取同一个目标场景,基于双目测量原理重构像素空间坐标 获取信息丰富、包含冗余信息、解决了双目视觉系统匹配的多义性、匹配与定位精度高 配置与标定更加烦琐、匹配算法更复杂、计算量更大、实时性更差
NileCAM81_
CUOAGX
多摄像头系统几何参数测量[15]、物体表面重建[16]、巷道三维重建[17]、轨迹预测[18]等 结构光相机 由相机和投影装置组成,利用红外结构光/ToF原理,通过发射接收光测距 直接获取RGB图像和深度图像、测量精度高 测量范围窄、噪声大、视野小、易受光源干扰、无法测量透射材质
Realsense 深度
相机 D435导航定位[19]、SLAM[20]、参数测量[21]、行人识别[22]、物体表面三维重建[23]等 表 2 机器视觉在安全监测与事故预防中的应用分析
Table 2. Application analysis of machine vision in safety monitoring and accident prevention
应用场景 现有方法及原理 存在问题 解决方法 围岩变形监测 直接法直接拍摄巷道图像,经特征提取与点云配准,重构巷道三维信息;间接法将人工特征标志物固定在巷道表面,通过标志物变化,间接反映巷道变形 直接法监测精度高,但数据处理量大;间接法处理速度快,但数据较为稀疏 将2种方法相结合,提高监测精度与效率 火灾监测 通过提取图像中的火焰、烟雾等特征,或借助红外成像技术,使用机器学习算法或深度学习模型对提取的特征进行分析和识别,以确定是否存在火灾 煤矿火灾具有偶然性,对于早期火灾的识别,精准度与快速性有待提高 借助多源信息融合技术,将视频检测信息与多传感器信息融合,实现火灾预判 人员安全监测 通过图像处理技术识别人体特征,如头部、肢体轮廓、姿势等,分析人员行为动态,监测潜在安全风险和异常情况;或将人员位置和状态信息与预设的安全规则进行比较,触发相应的实时监控和报警机制 井下能见度低、空间狭窄、大型装备多,图像背景复杂多变,干扰人员检测的准确性 结合声音、红外等传感器,实现对矿井环境和人员的多维度监测,提高整体监测可靠性 输送带异常监测 采用可见光成像、红外热成像、结构光成像等,经特征提取与目标识别,实现输送带异物、撕裂、跑偏等异常状态监测 受低照度、高矿尘等环境因素影响,目标识别的准确度难以得到保证 深度学习等智能算法的应用可有效提高识别准确度 表 3 机器视觉在装备自动化与智能化中的应用分析
Table 3. Application analysis of machine vision in equipment automation and intelligence
应用
场景方法原理 当前进展 存在问题 掘进
系统通过特征提取与参数解算,对巷道掘进设备进行监测和控制,实时获取设备状态、位置及可能存在的故障或异常情况,并为掘进机械提供实时导航信息 实现了基于机器视觉的悬臂式掘进机机身定位与截割头位姿检测、掘进工作面稳定性与岩层变化监测预警等;研制了新型掘进类机器人和系统,如护盾式智能掘进机器人系统、综掘巷道掘进机器人系统、煤矿大断面智能快速掘锚成套装备、煤矿高阶智能快速掘进系统等 掘进装备体积较大、结构复杂,成像装置不易安装,光路易被遮挡,会导致成像不完整或质量不佳,影响机器视觉在巷道掘进系统中的应用效果 锚护
系统通过图像处理提取锚护装备的关键特征及支护参数,以识别可能存在的安全隐患或为锚护控制提供参数依据 应用视觉技术,在传统锚护工艺的基础上进行自动化改进,如通过监测支护参数变化提高支护精度,通过智能识别钢带锚孔实现锚具精准控制等;开发出掘锚一体化机、钻锚机器人、浆液喷护机器人等新型装备 锚护系统的检测通常需要实时响应,但图像处理和识别的速度可能受到环境因素、硬件性能和算法复杂度的限制 转载运输系统 通过视觉技术识别输送设备参数、状态、障碍物等,实现转载运输系统的自动化控制和智能化管理,提高运输效率和安全性 通过煤流量检测实现运输系统优化节能,通过目标识别监测运输装备的实时位置和状态,实现运输智能调度;实现运输装备机器人化,开发出钢丝绳牵引式机器人巡检系统、带式输送机检测机器人、煤矸自动分拣机器人等 如何应用多传感器融合技术进一步提高运输装备机器人化的智能程度,保障系统对复杂环境的适应能力 -
[1] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001 [2] 中国煤炭工业协会. 2022煤炭行业发展年度报告[R/OL]. [2023-08-10]. http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid=464&id=146683.China National Coal Association. 2022 annual report on the development of the coal industry[R/OL]. [2023-08-10]. http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid= 464&id=146683. [3] 王琦,康红普,王步康,等. 快速掘进工作面围岩分区平行锚固技术[J]. 岩石力学与工程学报,2023,42(11):2739-2752. doi: 10.13722/j.cnki.jrme.2022.1315WANG Qi,KANG Hongpu,WANG Bukang,et al. Research on surrounding rock partitioned parallel anchoring technology in rapid heading faces[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(11):2739-2752. doi: 10.13722/j.cnki.jrme.2022.1315 [4] 张凯. 基于顶板视觉的掘进机空间位姿检测方法研究[D]. 北京:煤炭科学研究总院,2021.ZHANG Kai. Research on spatial pose detection method of roadheader based on roof vision[D]. Beijing:China Coal Research Institute,2021. [5] MA Xianmin. Coal gangue image identification and classification with wavelet transform[C]. 2009 Second International Conference on Intelligent Computation Technology and Automation,Changsha,2009:562-565. [6] 冯媛. 融合感知的带式输送机煤流量监控系统[D]. 淮南:安徽理工大学,2020.FENG Yuan. Coal flow monitoring system of belt conveyor with integrated perception[D]. Huainan:Anhui University of Science & Technology,2020. [7] LEI Wanzhong,LIU Jingbo. Early fire detection in coalmine based on video processing[C]// YANG G. Proceedings of the 2012 International Conference on Communication,Electronics and Automation Engineering. Berlin:Springer,2013:239-245. [8] 王星. 基于视觉的煤矿井下带式输送机异常状态监测方法研究[D]. 太原:太原科技大学,2017.WANG Xing. Research on monitoring method for abnormal state of coal mine belt conveyor based on vision [D]. Taiyuan:Taiyuan University of Science and Technology,2017. [9] 贾倪. 矿井视频人员目标跟踪与煤岩图像识别方法研究[D]. 北京:中国矿业大学(北京),2015.JIA Ni. Research on visual personnel target tracking and coal-rock images recognition methods in coal mine[D]. Beijing:China University of Mining and Technology-Beijing,2015. [10] SZURGACZ D,ZHIRONKIN S,VÖTH S,et al. Thermal imaging study to determine the operational condition of a conveyor belt drive system structure[J]. Energies,2021,14(11). DOI: 10.3390/en14113258. [11] TOMESCU C,PRODAN M,VATAVU N,et al. Monitoring the work environment using thermal imaging cameras in order to prevent the self-ignition of coal[J]. Environmental Engineering and Management Journal,2017,16(6):1389-1393. doi: 10.30638/eemj.2017.150 [12] 张超. 悬臂式掘进机双目视觉与捷联惯导组合定位技术研究[D]. 西安:西安科技大学,2020.ZHANG Chao. Research on integrated positioning technology of boom-type roadheader based on binocular vision and strapdown inertial navigation[D]. Xi'an:Xi'an University of Science and Technology,2020. [13] ZHANG Lei,HAO Shangkai,WANG Haosheng,et al. Safety warning of mine conveyor belt based on binocular vision[J]. Sustainability,2022,14(20). DOI: 10.3390/SU142013276. [14] 陈清华,张旭. 基于双目立体匹配的巷道三维重建研究[J]. 激光杂志,2022,43(10):208-212. doi: 10.14016/j.cnki.jgzz.2022.10.208CHEN Qinghua,ZHANG Xu. Research on three-dimenional reconstruction of roadway based on binocular stereo matching[J]. Laser Journal,2022,43(10):208-212. doi: 10.14016/j.cnki.jgzz.2022.10.208 [15] USAMENTIAGA R,GARCÍA D F. Multi-camera calibration for accurate geometric measurements in industrial environments[J]. Measurement,2019,134:345-358. doi: 10.1016/j.measurement.2018.10.087 [16] 董建伟,李海滨,孔德明,等. 基于多视图立体视觉的煤场三维建模方法研究[J]. 燕山大学学报,2016,40(2):136-141. doi: 10.3969/j.issn.1007-791X.2016.02.006DONG Jianwei,LI Haibin,KONG Deming,et al. Research on 3D modeling of coal field based on multi-view stereo vision method[J]. Journal of Yanshan University,2016,40(2):136-141. doi: 10.3969/j.issn.1007-791X.2016.02.006 [17] JANISZEWSKI M,TORKAN M,UOTINEN L,et al. Rapid photogrammetry with a 360-degree camera for tunnel mapping[J]. Remote Sensing,2022,14(21). DOI: 10.3390/rs14215494. [18] MAO Qinghua,ZHANG Fei,ZHANG Xuhui,et al. Deviation correction path planning method of full-width horizontal axis roadheader based on improved particle swarm optimization algorithm[J]. Mathematical Problems in Engineering,2023. DOI: 10.1155/2023/3373873. [19] ZHAI Guodong,ZHANG Wentao,HU Wenyuan,et al. Coal mine rescue robots based on binocular vision:a review of the state of the art[J]. IEEE Access,2020,8:130561-130575. doi: 10.1109/ACCESS.2020.3009387 [20] RAVAL S,BANERJEE B P,SINGH S K,et al. A preliminary investigation of mobile mapping technology for underground mining[C]. IEEE International Geoscience and Remote Sensing Symposium,Yokohama,2019:6071-6074. [21] WANG Yuan,GUO Wei,ZHAO Shuanfeng,et al. A scraper conveyor coal flow monitoring method based on speckle structured light data[J]. Applied Sciences,2022,12(14). DOI: 10.3390/app12146955. [22] 朱蓉军,夏晶,赵思远,等. 钻锚机器人人机安全避碰方法[J]. 西安科技大学学报,2020,40(5):823-830. doi: 10.13800/j.cnki.xakjdxxb.2020.0510ZHU Rongjun,XIA Jing,ZHAO Siyuan,et al. Human-robot safety collision avoidance method for drill-anchor robot[J]. Journal of Xi'an University of Science and Technology,2020,40(5):823-830. doi: 10.13800/j.cnki.xakjdxxb.2020.0510 [23] 李浩天. 矿井巷道喷浆机械手壁面感知技术研究[D]. 徐州:中国矿业大学,2022.LI Haotian. Research on wall sensing technology of mine roadway slurry spraying manipulator[D]. Xuzhou:China University of Mining and Technology,2022. [24] MORAVEC H. Obstacle avoidance and navigation in the real world by a seeing robot rover[D]. Palo Alto:Stanford University,1980. [25] YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al. Geometrically driven underground camera modeling and calibration with coplanarity constraints for a boom-type roadheader[J]. IEEE Transactions on Industrial Electronics,2020,68(9):8919-8929. [26] 张旭辉,谢楠,张超,等. 悬臂式掘进机截割头位姿视觉测量系统改进[J]. 工矿自动化,2021,47(7):1-7. doi: 10.13272/j.issn.1671-251x.2021010057ZHANG Xuhui,XIE Nan,ZHANG Chao,et al. Improvement of vision measurement system for cutting head position of boom-type roadheader[J]. Industry and Mine Automation,2021,47(7):1-7. doi: 10.13272/j.issn.1671-251x.2021010057 [27] DU Yuxin,TONG Minming,ZHOU Lingling,et al. Edge detection based on Retinex theory and wavelet multiscale product for mine images[J]. Applied Optics,2016,55(34):9625-9637. doi: 10.1364/AO.55.009625 [28] YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al. Laser beams-based localization methods for boom-type roadheader using underground camera non-uniform blur model[J]. IEEE Access,2020,8:190327-190341. doi: 10.1109/ACCESS.2020.3032368 [29] 张旭辉,王恒,沈奇峰,等. 悬臂式掘进机位姿视觉检测系统改进[J]. 工矿自动化,2022,48(5):58-64. doi: 10.13272/j.issn.1671-251x.2021100051ZHANG Xuhui,WANG Heng,SHEN Qifeng,et al. Improvement of position and posture measurement system for boom-type roadheader based on machine vision[J]. Journal of Mine Automation,2022,48(5):58-64. doi: 10.13272/j.issn.1671-251x.2021100051 [30] 崔玉明. 煤矿巷道掘进机视觉/惯性融合自主定位关键技术研究[D]. 徐州:中国矿业大学,2021.CUI Yuming. Key technology research of visual/inertial fusion autonomous positioning for roadheader in coal mine[D]. Xuzhou:China University of Mining and Technology,2021. [31] 黄喆,燕庆德,邵震宇,等. 基于双相机标靶的直线顶管掘进机导向方法[J]. 激光与光电子学进展,2022,59(4):458-465.HUANG Zhe,YAN Qingde,SHAO Zhenyu,et al. Guiding method of linear pipe jacking machine based on dual camera target[J]. Laser & Optoelectronics Progress,2022,59(4):458-465. [32] WANG Lixin,HU Chengjun,PAN Gege,et al. Pose measurement technology of roadheader body based on fusion of visual and SINS[J]. Journal of Physics:Conference Series,2022,2363. DOI: 10.1088/1742-6596/2363/1/012014. [33] YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al. Infrared LEDs-based pose estimation with underground camera model for boom-type roadheader in coal mining[J]. IEEE Access,2019,7:33698-33712. doi: 10.1109/ACCESS.2019.2904097 [34] 徐剑坤. 基于机器视觉的巷道变形实时监测预警技术研究[D]. 徐州:中国矿业大学,2012.XU Jiankun. Real-time monitoring and early warning roadway deformation based on machine vision[D]. Xuzhou:China University of Mining and Technology,2012. [35] DU Yuxin,TONG Minming,LIU Ting,et al. Visual measurement system for roadheaders pose detection in mines[J]. Optical Engineering,2016,55(10). DOI: 10.1117/1.oe.55.10.104107. [36] DU Yuxin,TONG Minming. Contour recognition of roadheader cutting head based on shape matching[J]. Pattern Analysis and Applications,2019,22:1643-1653. doi: 10.1007/s10044-019-00813-3 [37] HE Shangmeng,TONG Ziyuan,MA Guobin,et al. Research on stereo vision matching algorithm for rescue robot[C]. International Conference on Robotics and Automation Sciences,Hong Kong,2017:35-38. [38] 闫鹏鹏. 煤矿巷道复杂场景图像拼接方法研究[D]. 徐州:中国矿业大学,2021.YAN Pengpeng. Research on image stitching method for the complicated scene of coalmine tunnel[D]. Xuzhou:China University of Mining and Technology,2021. [39] 吕志强. 复杂环境下煤矿皮带运输异物图像识别研究[D]. 徐州:中国矿业大学,2020.LYU Zhiqiang. Research on image recognition of foreign bodies in the process of coal mine belt transportation in complex environment[D]. Xuzhou:China University of Mining and Technology,2020. [40] 杨冬建. 基于双目视觉的TBM换刀机器人末端定位研究[D]. 大连:大连理工大学,2021.YANG Dongjian. Study on end positioning of TBM cutter changing robot based on binocular vision[D]. Dalian:Dalian University of Technology,2021. [41] MANSOURI S S,KANELLAKIS C,GEORGOULAS G,et al. Towards MAV navigation in underground mine using deep learning[C]. IEEE International Conference on Robotics and Biomimetics,Kuala Lumpur,2018:880-885. [42] ZHANG Rongchun,JING Meiru,YI Xuefeng,et al. Dense reconstruction for tunnels based on the integration of double-line parallel photography and deep learning[C]. ISPRS Congress,Nice,2022,43:1117-1123. [43] YU Rui,FANG Xinqiu,HU Chengjun,et al. Research on positioning method of coal mine mining equipment based on monocular vision[J]. Energies,2022,15(21). DOI: 10.3390/en15218068. [44] WU Hongzhuang,LIU Songyong,CHENG Cheng,et al. Multiscale variational autoencoder aided convolutional neural network for pose estimation of tunneling machine using a single monocular image[J]. IEEE Transactions on Industrial Informatics,2021,18(8):5161-5170. [45] 薛旭升,张旭辉,毛清华,等. 基于双目视觉的掘进机器人定位定向方法研究[J]. 西安科技大学学报,2020,40(5):781-789. doi: 10.13800/j.cnki.xakjdxxb.2020.0505XUE Xusheng,ZHANG Xuhui,MAO Qinghua,et al. Localization and orientation method of roadheader robot based on binocular vision[J]. Journal of Xi'an University of Science and Technology,2020,40(5):781-789. doi: 10.13800/j.cnki.xakjdxxb.2020.0505 [46] ZHANG Wentao,ZHAI Guodong,YUE Zhongwen,et al. Research on visual positioning of a roadheader and construction of an environment map[J]. Applied Sciences,2021,11(11). DOI: 10.3390/app11114968. [47] CHEN Hongyue,YANG Wei,MA Ying,et al. Multi-sensor fusion method for roadheader pose detection[J]. Mechatronics,2021,80. DOI: 10.1016/j.mechatronics.2021.102669. [48] YANG Jinyong,ZHANG Guanqin,HUANG Zhe,et al. Research on position and orientation measurement method for roadheader based on vision/INS[C]. International Conference on Optical Instruments and Technology,Beijing,2017:25-36. [49] 谢楠. 单目视觉与激光雷达融合的巷道三维重建与掘进机定位方法[D]. 西安:西安科技大学,2021.XIE Nan. Research on 3D reconstruction and roadheader positioning method of roadway based on monocular vision and laser radar fusion[D]. Xi'an:Xi'an University of Science and Technology,2021. [50] 杨金永. 煤矿掘进机动态位姿组合式测量方法的研究[D]. 天津:天津科技大学,2018.YANG Jinyong. Study on combined measurement method of dynamic position and orientation for coal mine roadheader[D]. Tianjin:Tianjin University of Science and Technology,2018. [51] 田原. 基于机器视觉的掘进机空间位姿检测技术研究[J]. 矿山机械,2013,41(2):27-30. doi: 10.16816/j.cnki.ksjx.2013.02.009TIAN Yuan. Research on automatic inspection of spatial attitude and position of roadheader based on machine vision technology[J]. Mining & Processing Equipment,2013,41(2):27-30. doi: 10.16816/j.cnki.ksjx.2013.02.009 [52] 杨文辉. 双护盾硬岩隧道掘进机导向系统关键技术研究[D]. 天津:天津大学,2016.YANG Wenhui. Research on the key techniques of the guidance system of double shield universal compact TBM[D]. Tianjin:Tianjin University,2016. [53] 杨文娟,张旭辉,张超,等. 基于三激光束标靶的煤矿井下长距离视觉定位方法[J]. 煤炭学报,2022,47(2):986-1001. doi: 10.13225/j.cnki.jccs.xr21.1762YANG Wenjuan,ZHANG Xuhui,ZHANG Chao,et al. Long distance vision localization method based on triple laser beams target in coal mine[J]. Journal of China Coal Society,2022,47(2):986-1001. doi: 10.13225/j.cnki.jccs.xr21.1762 [54] QU Yuanyuan,YANG Teng,LI Tao,et al. Path tracking of underground mining boom roadheader combining BP neural network and state estimation[J]. Applied Sciences,2022,12(10). DOI: 10.3390/app12105165. [55] OTHER R,RATH G,OLEARY P. Calibration verification of a mining machine using image processing[C]. Machine Vision Applications in Industrial Inspection XI,Santa Clara,2003:59-65. [56] WANG Suyu,WU Miao. Cutting trajectory planning of sections with complex composition for roadheader[J]. Journal of Mechanical Engineering Science,2019,233(4):1441-1452. doi: 10.1177/0954406218768840 [57] 张旭辉,赵建勋,张超,等. 悬臂式掘进机视觉伺服截割控制系统研究[J]. 煤炭科学技术,2022,50(2):263-270. doi: 10.13199/j.cnki.cst.2019-0628ZHANG Xuhui,ZHAO Jianxun,ZHANG Chao,et al. Study on visual servo control system for cutting of cantilever roadheader[J]. Coal Science and Technology,2022,50(2):263-270. doi: 10.13199/j.cnki.cst.2019-0628 [58] 张超,张旭辉,张楷鑫,等. 数字孪生驱动掘进机远程自动截割控制技术[J]. 工矿自动化,2020,46(9):15-20,32. doi: 10.13272/j.issn.1671-251x.17640ZHANG Chao,ZHANG Xuhui,ZHANG Kaixin,et al. Digital twin driven remote automatic cutting control technology of roadheader[J]. Industry and Mine Automation,2020,46(9):15-20,32. doi: 10.13272/j.issn.1671-251x.17640 [59] CHELUSZKA P,JAGIEŁA-ZAJĄC A. Validation of a method for measuring the position of pick holders on a robotically assisted mining machine's working unit[J]. Energies,2022,15(1). DOI: 10.3390/en15010295. [60] JAGIEŁA-ZAJĄC A,CHELUSZKA P. Measurement of the pick holders position on the side surface of the cutting head of a mining machine with the use of stereoscopic vision[C]. Scientific and Technical Conference on Innovative Mining Technologies,Szczyrk,2020:44-54. [61] CHELUSZKA P,MANN R. Determination of boom vibrations of the road header during cutting based on the analysis of images from high-speed cameras[J]. New Trends in Production Engineering,2019,2(1):37-49. doi: 10.2478/ntpe-2019-0004 [62] CHELUSZKA P,MANN R. Vibration identification of the roadheader cutting head using high-speed cameras[C]. MATEC Web of Conferences,2019. DOI: 10.1051/matecconf/201925203018. [63] 杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005. doi: 10.13225/j.cnki.jccs.2019.1452YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005. doi: 10.13225/j.cnki.jccs.2019.1452 [64] 张红,李晨阳. 基于光学图像的煤矸石识别方法综述[J]. 煤炭工程,2022,54(7):159-163.ZHANG Hong,LI Chenyang. Review on coal gangue identification methods based on optical images[J]. Coal Engineering,2022,54(7):159-163. [65] 陈雪梅,张晞,徐莉莉,等. 煤与矸石分形维数的差异研究[J]. 煤炭科学技术,2017,45(7):196-199. doi: 10.13199/j.cnki.cst.2017.07.035CHEN Xuemei,ZHANG Xi,XU Lili,et al. Study on fractal dimension differences of coal and rock[J]. Coal Science and Technology,2017,45(7):196-199. doi: 10.13199/j.cnki.cst.2017.07.035 [66] LI Man,DUAN Yong,HE Xianli,et al. Image positioning and identification method and system for coal and gangue sorting robot[J]. International Journal of Coal Preparation and Utilization,2022,42(4/6):1759-1777. [67] HU Feng,ZHOU Mengran,YAN Pengcheng,et al. Multispectral imaging:a new solution for identification of coal and gangue[J]. IEEE Access,2019,7:169697-169704. doi: 10.1109/ACCESS.2019.2955725 [68] LIU Qiang,LI Jingao,LI Yusheng,et al. Recognition methods for coal and coal gangue based on deep learning[J]. IEEE Access,2021,9:77599-77610. doi: 10.1109/ACCESS.2021.3081442 [69] SU Lingling,CAO Xiangang,MA Hongwei,et al. Research on coal gangue identification by using convolutional neural network[C]. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference,Xi'an,2018:810-814. [70] PU Yuanyuan,APEL D B,SZMIGIEL A,et al. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning[J]. Energies,2019,12(9). DOI: 10.3390/en12091735. [71] 代伟,赵杰,杨春雨,等. 基于双目视觉深度感知的带式输送机煤量检测方法[J]. 煤炭学报,2017,42(增刊2):547-555. doi: 10.13225/j.cnki.jccs.2017.0389DAI Wei,ZHAO Jie,YANG Chunyu,et al. Detection method of coal quantity in belt conveyor based on binocular vision depth perception[J]. Journal of China Coal Society,2017,42(S2):547-555. doi: 10.13225/j.cnki.jccs.2017.0389 [72] WANG Guimei,LI Xuehui,YANG Lijie. Dynamic coal quantity detection and classification of permanent magnet direct drive belt conveyor based on machine vision and deep learning[J]. International Journal of Pattern Recognition and Artificial Intelligence,2021,35(11). DOI: 10.1142/S0218001421520170. [73] LI Jiacheng,ZHANG Junsheng,WANG Honglei,et al. Coal flow volume measurement of belt conveyor based on binocular vision and line structured light[C]. IEEE International Conference on Electrical Engineering and Mechatronics Technology,Qingdao,2021:636-639. [74] 周楠. 基于机器视觉的矿井环境三维重建研究[D]. 徐州:中国矿业大学,2022.ZHOU Nan. Research on 3D reconstruction of mine environment based on machine vision[D]. Xuzhou:China University of Mining and Technology,2022. [75] 张雄. 视觉计算在煤矿巷道变形监测中的应用研究[D]. 西安:西安科技大学,2015.ZHANG Xiong. Application and research of visual computing for deformation monitoring of coal mine roadway[D]. Xi'an:Xi'an University of Science and Technology,2015. [76] 李华,雷勇,甘创. 基于视觉辅助的隧道轮廓监测[J]. 机械工程学报,2018,54(1):90-98.LI Hua,LEI Yong,GAN Chuang. Tunnel deformation monitoring based on vision assistant[J]. Journal of Mechanical Engineering,2018,54(1):90-98. [77] DU Ting,WANG Dongxing,QIAN Xu. Study on 3-dimensional stereoscopic image model in intelligent coal mine[J]. Energy Reports,2022,8:291-299. [78] 邓军,李贝,王凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10):1-7,101. doi: 10.13199/j.cnki.cst.2016.10.001DENG Jun,LI Bei,WANG Kai,et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology,2016,44(10):1-7,101. doi: 10.13199/j.cnki.cst.2016.10.001 [79] 赵端,李涛,董彦强,等. 基于边缘智能的煤矿外因火灾感知方法[J]. 工矿自动化,2022,48(12):108-115. doi: 10.13272/j.issn.1671-251x.2022080046ZHAO Duan,LI Tao,DONG Yanqiang,et al. Coal mine external fire detection method based on edge intelligence[J]. Journal of Mine Automation,2022,48(12):108-115. doi: 10.13272/j.issn.1671-251x.2022080046 [80] 张美金,田宇驰,方志朋. 矿井主运输系统火灾预测的RS−SVM模型[J]. 测控技术,2018,37(9):29-32. doi: 10.19708/j.ckjs.2018.09.007ZHANG Meijin,TIAN Yuchi,FANG Zhipeng. RS-SVM model for fire prediction of mine transportation system[J]. Measurement & Control Technology,2018,37(9):29-32. doi: 10.19708/j.ckjs.2018.09.007 [81] BARROS-DAZA M J,LUXBACHER K D,LATTIMER B Y,et al. Mine conveyor belt fire classification[J]. Journal of Fire Sciences,2022,40(1):44-69. doi: 10.1177/07349041211056343 [82] MENDHAM F,CLIFF D,HORBERRY T. Field testing and reliability assessment of video based fire detection in coal mining and coal handling environments[C]. The 16th Coal Operators' Conference,Mining Engineering,Wollongong,2016:443-450. [83] 张思齐. 基于视频图像的煤矿井下烟雾检测[D]. 西安:西安科技大学,2019.ZHANG Siqi. Smoke detection in coal mine based on video image[D]. Xi'an:Xi'an University of Science and Technology,2019. [84] 毛浩,张建安,解云龙,等. 张家峁煤矿变电所智能巡检机器人系统设计[J]. 煤矿机械,2022,43(4):18-20. doi: 10.13436/j.mkjx.202204006MAO Hao,ZHANG Jian'an,XIE Yunlong,et al. Design of intelligent inspection robot system for Zhangjiamao Coal Mine substation[J]. Coal Mine Machinery,2022,43(4):18-20. doi: 10.13436/j.mkjx.202204006 [85] 刘春梅,李辉. 煤矿开采用掘进机人员识别系统设计与研究[J]. 内蒙古农业大学学报(自然科学版),2020,41(4):76-79.LIU Chunmei,LI Hui. Design of the roadheaders used in the personnel identification system[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition),2020,41(4):76-79. [86] ALPORT M,GOVINDER P,PLUM S,et al. Identification of conveyor belt splices and damages using neural networks[J]. Bulk Solids Handling,2001,21(6):622-627. [87] 方崇全,张荣华. 基于X射线图像的接头抽动算法研究[J]. 煤矿开采,2016,21(4):50-52. doi: 10.13532/j.cnki.cn11-3677/td.2016.04.013FANG Chongquan,ZHANG Ronghua. Belt joint twitch algorithm research based on X-ray image[J]. Coal Mining Technology,2016,21(4):50-52. doi: 10.13532/j.cnki.cn11-3677/td.2016.04.013 [88] 张灿. X光钢丝绳芯输送带接头伸长自动检测算法研究与实现[D]. 天津:天津工业大学,2018.ZHANG Can. Research and implementation of automatic detection algorithm for elongation of steel cord conveyor belt joints[D]. Tianjin:Tianjin University of Technology,2018. [89] 黄元麒. 基于X光图像的钢丝绳芯输送带接头抽动检测算法研究[D]. 徐州:中国矿业大学,2019.HUANG Yuanqi. Research on joint twitch detection algorithm of steel cord conveyor belts based on X-ray image[D]. Xuzhou:China University of Mining and Technology,2019. [90] LI Jie,MIAO Changyun. The conveyor belt longitudinal tear on-line detection based on improved SSR algorithm[J]. Optik,2016,127(19):8002-8010. doi: 10.1016/j.ijleo.2016.05.111 [91] HAO Xiaoli,LIANG Huan. A multi-class support vector machine real-time detection system for surface damage of conveyor belts based on visual saliency[J]. Measurement,2019,146:125-132. doi: 10.1016/j.measurement.2019.06.025 [92] YANG Ruiyun,QIAO Tiezhu,PANG Yusong,et al. Infrared spectrum analysis method for detection and early warning of longitudinal tear of mine conveyor belt[J]. Measurement,2020,165:107856-107864. doi: 10.1016/j.measurement.2020.107856 [93] 乔铁柱. 输送带纵向撕裂可见光与红外双目视觉在线检测系统研究[D]. 太原:太原理工大学,2015.QIAO Tiezhu. Binocular vision on-line detection system study for conveyor belt longitudinal tear based on infrared and visible light [D]. Taiyuan:Taiyuan University of Technology,2015. [94] YU Binchao,QIAO Tiezhu,ZHANG Haitao,et al. Dual band infrared detection method based on mid-infrared and long infrared vision for conveyor belts longitudinal tear[J]. Measurement,2018,120:140-149. doi: 10.1016/j.measurement.2018.02.029 [95] LYU Zhiwei,ZHANG Xiaoguang,HU Jiangdi,et al. Visual detection method based on line lasers for the detection of longitudinal tears in conveyor belts[J]. Measurement,2021,183. DOI: 10.1016/j.measurement.2021.109800. [96] LI Xianguo,SHEN Lifang,MING Zixu,et al. Laser-based on-line machine vision detection for longitudinal rip of conveyor belt[J]. Optik,2018,168:360-369. doi: 10.1016/j.ijleo.2018.04.053 [97] LI Weiwei,LI Chunqing,YAN Fanlei. Research on belt tear detection algorithm based on multiple sets of laser line assistance[J]. Measurement,2021,174. DOI: 10.1016/j.measurement.2021.109047. [98] ZHANG Mengchao,ZHANG Yuan,ZHOU Manshan,et al. Application of lightweight convolutional neural network for damage detection of conveyor belt[J]. Applied sciences,2021,11(16). DOI: 10.3390/app11167282. [99] 杨彦利,苗长云,亢伉,等. 输送带跑偏故障的机器视觉检测技术[J]. 中北大学学报(自然科学版),2012,33(6):667-671. doi: 10.3969/j.issn.1673-3193.2012.06.011YANG Yanli,MIAO Changyun,KANG Kang,et al. Machine vision inspection technique for conveyor belt deviation[J]. Journal of North University of China(Natural Science Edition),2012,33(6):667-671. doi: 10.3969/j.issn.1673-3193.2012.06.011 [100] 贾焕. 基于图像处理的输送带撕裂和跑偏检测研究[D]. 太原:太原科技大学,2019.JIA Huan. Research on detection of conveyor belt tearing and deviation based on image processing[D]. Taiyuan:Taiyuan University of Science and Technology,2019. [101] 胡江迪. 基于视觉的矿用输送带状态监测系统研究[D]. 徐州:中国矿业大学,2021.HU Jiangdi. Research on condition monitoring system of mine conveyor belt state on vision[D]. Xuzhou:China University of Mining and Technology,2021. [102] SARAN G,GANGULY A,TRIPATHI V,et al. Multi-modal imaging-based foreign particle detection system on coal conveyor belt[J]. Transactions of the Indian Institute of Metals,2022,75(9):2231-2240. doi: 10.1007/s12666-021-02492-3 [103] 吴守鹏. 基于机器视觉的运煤皮带异物识别方法研究[D]. 徐州:中国矿业大学,2019.WU Shoupeng. Research on detection method of foreign object on coal conveyor belt based on computer vision[D]. Xuzhou:China University of Mining and Technology,2019. [104] CHEN Yiming,SUN Xu,XU Liang,et al. Application of YOLOv4 algorithm for foreign object detection on a belt conveyor in a low-illumination environment[J]. Sensors,2022,22(18). DOI: 10.3390/s22186851. [105] WANG Yuanbin,WANG Yujing,DANG Langfei. Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD[J]. Journal of Ambient Intelligence and Humanized Computing,2023,14:5507-5516. doi: 10.1007/s12652-020-02495-w [106] 朱彦存. 基于深度学习的煤矿运煤皮带异物识别研究[D]. 阜新:辽宁工程技术大学,2021.ZHU Yancun. Research on foreign objects recognition of coal transport belt based on deep learning[D]. Fuxin:Liaoning Technical University,2021. [107] 马宏伟,杨文娟,张旭辉. 基于红外热像的带式输送机监测与预警系统[J]. 激光与红外,2017,47(4):448-452. doi: 10.3969/j.issn.1001-5078.2017.04.011MA Hongwei,YANG Wenjuan,ZHANG Xuhui. Monitoring and warning system of belt conveyor based on infrared thermography[J]. Laser & Infrared,2017,47(4):448-452. doi: 10.3969/j.issn.1001-5078.2017.04.011 [108] 刘宇琦. 基于深度学习的托辊异常检测方法研究[D]. 西安:西安科技大学,2020.LIU Yuqi. Research on abnormal detection method of idler based on deep learning[D]. Xi'an:Xi'an University of Science and Technology,2020. [109] 胡长斌. 基于视频数据的托辊异常检测研究[D]. 西安:西安科技大学,2021.HU Changbin. Research on abnormal detection of roller based on video data[D]. Xi'an:Xi'an University of Science and Technology,2021. [110] 朱振. 带式输送机托辊运行状态在线巡检机器人关键技术研究[D]. 阜新:辽宁工程技术大学,2020.ZHU Zhen. Research on the key technology of on-line inspection robot for the running state of belt conveyor roller[D]. Fuxin: Liaoning Technical University,2020. [111] STACHOWIAK M,KOPERSKA W,STEFANIAK P,et al. Procedures of detecting damage to a conveyor belt with use of an inspection legged robot for deep mine infrastructure[J]. Minerals,2021,11(10). DOI: 10.3390/min11101040. [112] SZREK J,WODECKI J,BŁAŻEJ R,et al. An inspection robot for belt conveyor maintenance in underground mine-infrared thermography for overheated idlers detection[J]. Applied Sciences,2020,10(14). DOI: 10.3390/app10144984. [113] CARVALHO R,NASCIMENTO R,D'ANGELO T,et al. A UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industry[J]. Sensors,2020,20(8). DOI: 10.3390/s20082243. [114] 王剑,刘备战,雷亚军,等. 曹家滩煤矿智能快速掘锚成套装备应用[J]. 陕西煤炭,2021,40(1):1-3,40.WANG Jian,LIU Beizhan,LEI Yajun,et al. Application of complete equipment for intelligent rapid excavation and anchoring in Caojiatan Coal Mine[J]. Shaanxi Coal,2021,40(1):1-3,40. [115] 乔佳伟. 基于机器视觉的煤矿井下锚护作业钢带孔识别研究[D]. 北京:煤炭科学研究总院,2022.QIAO Jiawei. Research on the identification of steel belt holes for underground anchoring operations in coal mines based on machine vision[D]. Beijing:China Coal Research Institute,2022. [116] 夏毅敏,马劼嵩,张亚洲,等. 基于柔度误差检测的锚杆台车机械臂定位[J]. 华南理工大学学报(自然科学版),2020,48(3):83-90. doi: 10.12141/j.issn.1000-565X.190251XIA Yimin,MA Jiesong,ZHANG Yazhou,et al. Bolting jumbo boom positioning based on compliance error detection[J]. Journal of South China University of Technology(Natural Science Edition),2020,48(3):83-90. doi: 10.12141/j.issn.1000-565X.190251 [117] 韩圳. 煤岩表面粗糙度智能图像识别技术及应用[D]. 徐州:中国矿业大学,2021.HAN Zhen. Intelligent image recognition technology and application of coal rock surface roughness[D]. Xuzhou:China University of Mining and Technology,2021. [118] 王昱栋. 基于机器视觉的煤矿巷道锚杆支护异常检测[D]. 徐州:中国矿业大学,2021.WANG Yudong. Anomaly detection of anchor bolt support in coal mine roadways based on machine vision[D]. Xuzhou:China University of Mining and Technology,2021. [119] 潘丽君,张强. 掘锚一体机全自动锚杆钻机的研制[J]. 中国新技术新产品,2022(15):87-90. doi: 10.13612/j.cnki.cntp.2022.15.024PAN Lijun,ZHANG Qiang. Development of fully automatic anchor rod drilling machine for integrated excavation and anchoring machine[J]. New Technology & New Products of China,2022(15):87-90. doi: 10.13612/j.cnki.cntp.2022.15.024 [120] 马宏伟,孙思雅,王川伟,等. 多机械臂多钻机协作的煤矿巷道钻锚机器人关键技术[J]. 煤炭学报,2023,48(1):497-509. doi: 10.13225/j.cnki.jccs.2022.1589MA Hongwei,SUN Siya,WANG Chuanwei,et al. Key technology of drilling anchor robot with multi-manipulator and multi-rig cooperation in the coal mine roadway[J]. Journal of China Coal Society,2023,48(1):497-509. doi: 10.13225/j.cnki.jccs.2022.1589 [121] 郭伟东. 基于激光辅助视觉技术的矿井带式输送机节能优化控制研究[D]. 徐州:中国矿业大学,2021.GUO Weidong. Study on energy-saving optimization control of mine belt conveyor based on laser-assisted vision technology[D]. Xuzhou:China University of Mining and Technology,2021. [122] 成彦颖. 煤矿井下传送带智能输煤检测的研究[D]. 太原:太原科技大学,2021.CHENG Yanying. Research on intelligent coal conveyor detection in underground coal mine[D]. Taiyuan:Taiyuan University of Science and Technology,2021. [123] 王雯. 煤矿辅助运输转载容器设计与识别定位技术研究[D]. 太原:太原理工大学,2022.WANG Wen. Research on design and identification and positioning technology of coal mine auxiliary transportation reprint container[D]. Taiyuan:Taiyuan University of Technology,2022. [124] 秦伟华. 煤矿用带式输送机巡检机器人设计与研究[D]. 太原:太原理工大学,2020.QIN Weihua. Design and research of inspection robot for belt conveyor in coal mine[D]. Taiyuan:Taiyuan University of Technology,2020. [125] GARCIA G,ROCHA F,TORRE M,et al. ROSI:a novel robotic method for belt conveyor structures inspection[C]. International Conference on Advanced Robotics,Belo Horizonte,2019:326-331. [126] SUN Zhiyuan,HUANG Linlin,JIA Ruiqing. Coal and gangue separating robot system based on computer vision[J]. Sensors,2021,21(4). DOI: 10.3390/s21041349.