煤矿井下无线传输衰减分析测试与最佳工作频段研究

孙继平, 梁伟锋, 彭铭, 张高敏, 潘涛, 张侯, 李小伟

孙继平,梁伟锋,彭铭,等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093
引用本文: 孙继平,梁伟锋,彭铭,等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093
SUN Jiping, LIANG Weifeng, PENG Ming, et al. Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band[J]. Journal of Mine Automation,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093
Citation: SUN Jiping, LIANG Weifeng, PENG Ming, et al. Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band[J]. Journal of Mine Automation,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093

煤矿井下无线传输衰减分析测试与最佳工作频段研究

基金项目: 国家重点研发计划项目(2016YFC0801800)。
详细信息
    作者简介:

    孙继平(1958—),男,山西翼城人,教授,博士,博士研究生导师,中国矿业大学(北京)原副校长;获国家科技进步奖和技术发明奖二等奖4项(第1完成人3项);作为第1完成人获省部级科技进步特等奖和一等奖8项;作为第1完成人主持制定中华人民共和国煤炭行业、安全生产行业和能源行业标准40项;作为第1发明人获国家授权发明专利100余件;主持制定《煤矿安全规程》第十一章“监控与通信”;被SCI和EI检索的第1作者或独立完成论文100余篇;作为第1作者或独立完成著作12部;作为国务院煤矿事故调查专家组组长参加了10起煤矿特别重大事故调查工作;E-mail:sjp@cumtb.edu.cn

  • 中图分类号: TD655

Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band

  • 摘要: 5G,UWB,ZigBee,WiFi6等矿井移动通信、人员及车辆定位、无线传输等技术在煤矿井下应用,促进了煤矿安全生产和煤矿智能化建设。然而受电气防爆的限制,煤矿井下无线发射功率不大于6 W,制约着矿井无线传输距离,增加了基站用量和系统成本,不便于系统使用和维护。在无线发射功率受电气防爆限制的条件下,选择传输衰减较小的无线工作频段,可有效提高无线传输距离,减小基站用量和系统成本。为满足矿井无线传输工作频段选择与优化的需求,在国家能源集团国神公司三道沟煤矿的辅助运输大巷和综采工作面分别进行了700 MHz~6 GHz频段的无线传输测试,并对测试结果进行了分析,提出了矿井无线传输优选频段:① 辅助运输大巷无线传输的最佳工作频段为700~910 MHz。② 综采工作面无线传输的最佳工作频段为700~1 710 MHz。③ 辅助运输大巷无线传输衰减比综采工作面无线传输衰减小,且随着频率增大,辅助运输大巷与综采工作面无线传输衰减的差值变小。④ 矿井无线传输的最佳工作频段为700~1 710 MHz。
    Abstract: The application of technologies such as 5G, UWB, ZigBee and WiFi6 in coal mine mobile communication, personnel and vehicle positioning, and wireless transmission has promoted coal mine safety production and intelligent construction. However, due to the limitations of electrical explosion-proof measures, the wireless transmission power underground in coal mines is not greater than 6 W, which restricts the wireless transmission distance in the mine, and increases the usage of base stations and system costs. It is not convenient for system use and maintenance. Under the condition that the wireless transmission power is limited by electrical explosion-proof measures, selecting a wireless operating frequency band with smaller transmission attenuation can effectively increase the wireless transmission distance, reduce the usage of base stations, and reduce system costs. In order to meet the needs of selecting and optimizing the working frequency band of wireless transmission in mines, wireless transmission tests in the 700 MHz to 6 GHz frequency band are conducted in the auxiliary transportation roadway and fully mechanized working face of the Sandaogou Coal Mine of the National Energy Group. The test results are analyzed and the optimal frequency band for wireless transmission in mines is proposed. ① The optimal operating frequency band for wireless transmission in auxiliary transportation roadways is 700 to 910 MHz. ② The optimal working frequency band for wireless transmission in fully mechanized working faces is 700 to 1 710 MHz. ③ The wireless transmission attenuation of the auxiliary transportation roadway is smaller than that of the fully mechanized working face. As the frequency increases, the difference in wireless transmission attenuation between the auxiliary transportation roadway and the fully mechanized working face decreases. ④ The optimal working frequency band for wireless transmission in mines is 700 to 1 710 MHz.
  • 5G,UWB,ZigBee,WiFi6等矿井移动通信、人员及车辆定位、无线传输等技术在煤矿井下应用,提高了生产力和设备利用率,促进了煤矿安全生产和煤矿智能化建设[1-5]。然而受电气防爆的限制,煤矿井下无线发射功率不大于6 W,制约着矿井无线传输距离,增加了基站用量和系统成本,不便于系统使用和维护[6-11]。在无线发射功率受电气防爆限制的条件下,选择传输衰减较小的无线工作频段,可有效提高无线传输距离,减小基站用量和系统成本。受煤矿井下电气防爆等限制,通过理论分析和计算机仿真等研究矿井无线传输衰减较多,煤矿井下现场测试较少,未见有700 MHz~6 GHz较大频率范围煤矿井下无线传输衰减测试报告,难以满足矿井无线传输工作频段选择与优化的需求。笔者所在项目组进行了700 MHz~6 GHz较大频率范围煤矿井下无线传输衰减测试,并对测试结果进行了分析,提出了矿井无线传输最佳工作频段。

    笔者所在项目组于2023年2月在国家能源集团国神公司三道沟煤矿的辅助运输大巷和综采工作面分别进行了700 MHz~6 GHz频段的无线传输测试。测试所在辅助运输大巷为宽5.7 m、高3 m的平直矩形巷道,总长约为3 km,动力电缆、水管、通风管均在巷道右侧,如图1所示。测试所在综采工作面高度为3 m,宽度为6.7 m(其中液压支架立柱底部至煤壁宽度为4 m),总长约为300 m,如图2所示。

    图  1  辅助运输大巷测试现场
    Figure  1.  Test site in auxiliary transportation roadway
    图  2  综采工作面测试现场
    Figure  2.  Test site in fully mechanized working face

    测试采用的设备有1台便携式射频信号发生器、1台便携式实时频谱分析仪、1根0.3 m SMA射频馈线、1根1 m SMA射频馈线、2根对数周期天线、2个可伸缩三角支架和2台笔记本电脑。便携式射频信号发生器型号为BPSG6,可发射频段为23.5 MHz~6 GHz,最大发射功率为+18 dBm。便携式实时频谱分析仪型号为V6−RSA250X,可测量频段为10 MHz~6 GHz,最大实时带宽为80 MHz,显示平均噪声电平(Display Average Noise Level,DANL)为−170 dBm/Hz。对数周期天线型号为HyperLOG 7060,工作频段为700 MHz~6 GHz,典型增益为5 dBi。根据矿用5G,4G,WiFi6,UWB,ZigBee等矿井人员定位系统、移动通信系统、无线视频和无线传感器使用频段[12-17],煤矿井下测试频点选择700,910,1 200,1 500,1 770,1 950,2 400,2 595,3 550,4 800,5 400,6 000 MHz。

    辅助运输大巷和综采工作面的测试设备安装分别如图3图4所示。在发射端将便携式射频信号发生器固定在高1.6 m的可伸缩三脚支架上,用0.3 m SMA射频馈线将对数周期天线与便携式射频信号发生器相连,并用数据线将便携式射频信号发生器与笔记本电脑相连,通过笔记本电脑上的Aaronia AG−HF Generator软件控制便携式射频信号发生器的发射频率和发射功率。在接收端用1 m SMA射频馈线将对数周期天线与便携式实时频谱分析仪相连,并用数据线将便携式实时频谱分析仪与笔记本电脑相连,通过笔记本电脑上的Aaronia RTSA−Suite PRO软件实时记录接收功率测量值。将发射端设备固定不动,收发天线水平对齐,并水平直线移动接收端设备,即可测得井下不同距离下的无线传输接收功率。

    图  3  辅助运输大巷设备安装现场
    Figure  3.  Equipment installation site in auxiliary transportation roadway
    图  4  综采工作面设备安装现场
    Figure  4.  Equipment installation site in fully mechanized working face

    发射端设备固定不动,发射天线在辅助运输大巷中间(到两侧巷帮距离相等),高度距辅助运输大巷地面1.6 m,发射功率设定为+18 dBm。接收天线在辅助运输大巷中间(到两侧巷帮距离相等),高度距辅助运输大巷底板1.6 m,与发射天线水平对齐。不断增加接收天线和设备(以下简称接收天线)与发射天线和设备(以下简称发射天线)之间的轴向距离,频谱分析仪实时测量接收功率,直到收发天线相距540 m。由于接收功率测量值受射频馈线损耗、天线增益、发射功率和接收灵敏度等影响[18-21],所以需要对接收功率测量值进行校准。为减少多径效应的影响,对收发天线每间隔10 m的无线传输衰减数据取1次平均值,得到辅助运输大巷不同频率无线传输衰减,见表1,并绘制成曲线,如图5所示。

    表  1  辅助运输大巷不同频率无线传输衰减
    Table  1.  Wireless transmission attenuation at different frequencies in auxiliary transportation roadway
    收发天线
    距离/m
    辅助运输大巷不同频率无线传输衰减/dB
    700 MHz910 MHz1 200 MHz1 500 MHz1 770 MHz1 950 MHz2 400 MHz2 595 MHz3 550 MHz4 800 MHz5 400 MHz6 000 MHz
    1033.9245.6947.4042.4846.8746.3447.7349.8750.8054.8753.8247.93
    2042.1848.3948.5650.5951.8253.6457.9956.9860.4562.2564.4963.68
    3046.4750.1055.7553.8857.2256.6558.6360.2764.8466.2269.8170.51
    4045.5647.0955.9458.6662.9259.7962.2063.9066.3867.9569.5573.23
    5053.0151.0749.9257.5363.0662.3562.9965.7668.0671.2671.7372.49
    6047.3359.7756.4251.6061.1065.0173.1768.4571.7670.7177.1574.04
    7047.1153.9562.9160.8461.2161.5477.7065.3569.3271.6374.2079.21
    8052.8449.6963.7468.5861.0258.1278.1465.7873.5673.4274.5479.41
    9045.8957.3759.5268.3268.0868.2478.6170.2473.5472.9777.8478.86
    10054.4350.7653.7062.2273.5567.3976.1568.9674.6173.5977.7677.21
    11049.0050.9357.5757.7569.5672.1067.9769.0871.5373.6971.4178.54
    12047.4554.7656.7157.1862.1871.8667.8072.8567.7175.9574.7281.78
    13051.8955.6055.9458.1065.0373.5567.4576.5867.0581.0079.8074.43
    14048.9254.6352.8865.0567.2865.8567.0972.1369.6280.4882.2976.70
    15053.0459.1658.6261.3559.8366.3064.6473.2973.4280.9777.3477.03
    16051.7959.3260.8057.9864.4665.6964.0678.6176.5781.6577.6679.28
    17051.5253.7660.3756.9265.8162.7674.9075.4178.5976.4781.2986.61
    18057.1253.8856.9359.0665.4866.3075.7271.7182.7377.6176.0888.48
    19054.8458.1859.3261.1565.9968.7276.1671.5482.4577.5174.9685.60
    20053.3061.8260.9161.9061.0066.2275.2770.1481.9779.4177.3284.41
    21058.6559.2261.2364.5061.2565.2675.5670.6180.1582.6677.1279.78
    22058.4859.7360.8863.4860.1361.7972.9069.0280.8985.5174.5779.05
    23054.3960.7861.4661.8561.2361.9770.0472.3077.1086.2976.4584.00
    24055.8261.5156.3863.9463.6463.8165.5170.8972.0988.0777.9077.40
    25058.6757.5855.8864.3564.6164.4369.1670.3774.8185.1084.9778.59
    26055.8656.4756.8468.1066.3863.6471.2872.5074.1081.7184.1789.82
    27058.3762.5659.6965.6071.5067.8769.7471.3972.9487.0985.7087.15
    28061.4460.2459.4963.0167.8770.9669.8966.6076.4185.7483.2590.50
    29062.0557.7756.7061.3866.5469.3980.3167.1172.0489.0483.8886.13
    30071.5659.6158.6362.7867.0074.6273.9271.3171.3985.8786.5187.20
    31067.8858.0261.3863.0366.9880.5566.7977.3371.9381.6783.8089.43
    32059.3257.5061.8370.2766.6276.1469.1570.8871.4084.7287.8587.24
    33060.7061.4358.0867.7369.8177.2567.5270.8969.0183.3385.0890.30
    34060.1859.3359.5260.1570.7469.6468.1369.3372.7386.0881.9188.64
    35060.2960.3361.2762.1765.2768.8167.2271.7879.7682.1482.7487.22
    36061.5762.4262.7164.5863.8372.6571.1473.2785.3378.7981.2094.62
    37064.6959.7260.4569.2869.0566.6676.5072.2582.8779.2886.5087.47
    38064.0558.8762.1966.8166.6368.2076.3775.6184.7980.3383.9688.69
    39063.3060.9264.7762.1468.8069.5371.8578.3675.7283.3981.4485.02
    40062.7060.9066.5566.6965.6865.3376.8275.1775.4379.1179.6684.36
    41064.6964.1075.6266.0870.1167.4476.0375.0878.3679.3485.7885.13
    42065.5466.1366.0369.5269.3677.1577.4775.8178.1182.4481.0984.27
    43066.1162.6763.8964.2069.2370.0075.8274.8380.5278.8381.0086.10
    44066.5364.6070.9564.6372.2868.6871.5575.7178.6278.5381.2986.11
    45065.1763.0473.3864.8269.7268.6375.0178.2281.3982.2682.8185.33
    46065.7862.0165.1068.5170.8569.1381.7473.9782.6282.9486.1191.38
    47065.2065.1865.3769.2273.4968.4673.4173.6778.5078.0582.7490.41
    48066.2364.8675.7964.2475.0671.6074.0471.7776.9376.2383.2988.60
    49065.0764.8072.3166.5681.2774.0873.2669.7179.0778.3383.6588.42
    50068.2066.7067.8366.2775.2474.9870.6973.2378.2978.5483.7486.63
    51068.1965.4872.5672.8271.5374.2072.7375.1381.1678.9884.9189.51
    52068.1866.0469.2271.7770.1873.7574.0474.3083.6278.3282.1789.90
    53070.0868.2875.6469.2470.2678.7673.9376.8787.5379.1781.6386.33
    54068.4969.8971.9169.4071.9489.7074.6277.9385.8380.3481.2787.46
    下载: 导出CSV 
    | 显示表格
    图  5  辅助运输大巷不同频率无线传输衰减曲线
    Figure  5.  Curves of wireless transmission attenuation at different frequencies in auxiliary transportation roadway

    为便于分析辅助运输大巷不同频率无线传输衰减,对辅助运输大巷540 m内无线传输衰减数据取平均,得到辅助运输大巷540 m内不同频率无线传输平均衰减,见表2,并绘制成曲线,如图6所示。

    表2图6可看出,在700 MHz~6 GHz频段内,辅助运输大巷无线传输衰减总体上呈现出随频率增大而增大的趋势;在700~910 MHz频段内,辅助运输大巷无线传输平均衰减最小值为58.17 dB(对应700 MHz)、最大值为58.97 dB(对应910 MHz),相差仅为0.8 dB,可见该频段的无线传输平均衰减最小。因此,辅助运输大巷无线传输的最佳工作频段应为700~910 MHz。

    表  2  辅助运输大巷540 m内不同频率无线传输平均衰减
    Table  2.  Average wireless transmission attenuation at different frequencies within 540 m of auxiliary transportation roadway
    频率/MHz7009101 2001 5001 7701 950
    平均衰减/dB58.1758.9761.5863.1566.4468.21
    频率/MHz2 4002 5953 5504 8005 4006 000
    平均衰减/dB71.2771.3075.4978.8579.5282.92
    下载: 导出CSV 
    | 显示表格
    图  6  辅助运输大巷540 m内不同频率无线传输平均衰减曲线
    Figure  6.  Curves of average of wireless transmission attenuation at different frequencies within 540 m of auxiliary transportation roadway

    发射天线固定在2个液压支架的立柱中间,与左侧液压支架立柱底部的距离为1.3 m,与右侧煤壁的距离为2.7 m,发射天线距综采工作面底部为1.6 m,发射功率设定为+18 dBm。接收天线与发射天线水平对齐,与左侧液压支架立柱底部的距离为1.3 m,与右侧煤壁的距离为2.7 m,接收天线距综采工作面底板1.6 m。不断增加接收天线与发射天线之间的轴向距离,频谱分析仪实时测量接收功率,直到收发天线相距210 m。由于接收功率测量值受射频馈线损耗、天线增益、发射功率和接收灵敏度等影响,所以需要对接收功率测量值进行校准。为减少多径效应的影响,对收发天线每间隔10 m的无线传输衰减数据取1次平均值,得到综采工作面不同频率无线传输衰减,见表3,并绘制成曲线,如图7所示。

    表  3  综采工作面不同频率无线传输衰减
    Table  3.  Wireless transmission attenuation at different frequencies in fully mechanized working face
    收发天线
    距离/m
    综采工作面不同频率无线传输衰减/dB
    700 MHz910 MHz1 200 MHz1 500 MHz1 770 MHz1 950 MHz2 400 MHz2 595 MHz3 550 MHz4 800 MHz5 400 MHz6 000 MHz
    1037.2844.8947.2842.5647.2449.0449.5750.7948.6655.5753.4856.22
    2047.3548.4653.3145.5656.5858.1159.5260.6960.3766.2167.1268.37
    3054.6154.3758.0853.8763.1663.1963.5666.7565.6771.5572.2073.17
    4057.0755.6757.1458.3963.5365.6967.8269.6166.4476.2673.9674.75
    5060.2267.7059.5660.9763.1164.0669.0272.6973.0974.1875.1674.47
    6057.7863.8166.0762.4266.2665.8968.9471.2471.0177.5380.2976.80
    7058.9765.0771.2562.3269.0367.8868.2071.8375.0577.9379.7581.78
    8060.3567.2465.3466.6673.8471.8971.7775.0677.7781.9280.6978.71
    9064.0971.4665.8368.5379.6578.3671.2173.1479.3882.6084.2679.68
    10067.4472.2469.0669.9883.7177.1472.3778.7672.3881.5080.1882.70
    11067.1872.6771.1171.0283.3879.0477.1179.8475.6982.5087.4980.34
    12070.0674.5271.1071.8777.8677.9683.2979.3078.3385.6485.1582.81
    13075.5179.2672.3172.5177.6777.7080.3878.5778.2485.6285.9387.73
    14077.7378.4475.5971.0477.1578.1679.1983.3577.1386.4682.2588.08
    15080.3783.9777.0671.2879.4179.4384.8088.1376.3989.3082.5489.50
    16084.5082.0878.2971.6680.1178.9485.7386.7285.4985.1983.7181.58
    17084.1483.5779.2375.9281.4782.3286.8494.3285.0785.0488.2282.46
    18085.1889.9079.3876.5681.5383.0184.3791.9090.3287.1287.9385.31
    19086.4892.0281.2877.0081.4682.0287.6889.2887.5486.8588.2587.99
    20086.5989.2483.5878.8880.1580.9689.9187.4087.8785.6390.7889.87
    21089.0888.1981.2481.4979.1880.3185.3792.9190.5692.2287.2091.96
    下载: 导出CSV 
    | 显示表格
    图  7  综采工作面不同频率无线传输衰减曲线
    Figure  7.  Curves of wireless transmission attenuation at different frequencies in fully mechanized working face

    为便于分析综采工作面不同频率无线传输衰减,对综采工作面210 m内的无线传输衰减数据取平均,得到综采工作面210 m内不同频率无线传输平均衰减,见表4,并绘制成曲线,如图8所示。

    表  4  综采工作面210 m内不同频率无线传输平均衰减
    Table  4.  Average wireless transmission attenuation at different frequencies within 210 m of fully mechanized working face
    频率/MHz7009101 2001 5001 7701 950
    平均衰减/dB69.8672.2869.9867.2873.6773.19
    频率/MHz2 4002 5953 5504 8005 4006 000
    平均衰减/dB76.0877.7976.8480.5680.6581.02
    下载: 导出CSV 
    | 显示表格
    图  8  综采工作面210 m内不同频率无线传输平均衰减曲线
    Figure  8.  Curves of average wireless transmission attenuation at different frequencies within 210 m of fully mechanized working face

    表4图8可看出,在700 MHz~6 GHz频段内,随着频率增大,综采工作面无线传输平均衰减大体上呈现出先增大后减小再增大的趋势。综采工作面一侧为金属液压支架,液压支架后面为采空区,综采工作面另一侧为煤壁,中间是采煤机和刮板输送机等大型机电设备,无线传输多径效应十分严重。因此,应选择平均衰减最小值对应频点附近的频率范围作为综采工作面无线传输的最佳工作频段。在700 MHz~6 GHz频段内,综采工作面无线传输平均衰减最小值为67.28 dB(对应1 500 MHz),700 MHz的无线传输平均衰减与其相近,为69.86 dB,相差仅为2.58 dB;在700~1 500 MHz频段内,综采工作面无线传输平均衰减最大值为72.28 dB(对应910 MHz);在1 500~1 770 MHz频段内,综采工作面无线传输平均衰减随频率增大而增大,在1 500~1 770 MHz频段内取与无线传输平均衰减为72.28 dB对应的频点(1 710 MHz)作为最佳工作频段的上限。因此,综采工作面无线传输的最佳工作频段应为700~1 710 MHz。

    为便于对比分析辅助运输大巷和综采工作面不同频率无线传输衰减,将辅助运输大巷和综采工作面210 m内的无线传输衰减数据分别取平均。辅助运输大巷和综采工作面210 m内不同频率无线传输平均衰减和衰减差值见表5,并绘制成曲线,如图9所示。

    表  5  辅助运输大巷和综采工作面210 m内不同频率无线传输平均衰减和衰减差值
    Table  5.  Average attenuation and attenuation difference of wireless transmission at different frequencies within 210 m of auxiliary transportation roadway and fully mechanized working faces
    位置不同频率无线传输平均衰减/dB
    700 MHz910 MHz1 200 MHz1 500 MHz1 770 MHz1 950 MHz2 400 MHz2 595 MHz3 550 MHz4 800 MHz5 400 MHz6 000 MHz
    辅助运输大巷210 m内49.8254.0556.9158.8462.6163.9969.0468.4571.6773.9274.3376.63
    综采工作面210 m内69.8672.2869.9867.2873.6773.1976.0877.7976.8480.5680.6581.02
    衰减差值/dB19.3218.5512.768.3310.999.406.519.754.636.886.464.05
    下载: 导出CSV 
    | 显示表格
    图  9  辅助运输大巷和综采工作面210 m内不同频率无线传输平均衰减和衰减差值曲线
    Figure  9.  Curves of average attenuation and attenuation difference of wireless transmission at different frequencies within 210 m of auxiliary transportation roadway and fully mechanized working faces

    表5图9可看出,在700 MHz~6 GHz频段内,辅助运输大巷210 m内平均衰减均比综采工作面210 m内平均衰减小,即辅助运输大巷无线传输衰减比综采工作面无线传输衰减小;随着频率增大,辅助运输大巷与综采工作面无线传输衰减的差值变小。

    通过现场测试和分析可得,综采工作面无线传输衰减大于辅助运输大巷,综采工作面无线传输的最佳工作频段为700~1 710 MHz,辅助运输大巷无线传输的最佳工作频段为700~910 MHz,因此,矿井无线传输的最佳工作频段应为700~1 710 MHz。

    在辅助运输大巷和综采工作面分别进行了700 MHz~6 GHz频段的无线传输测试,并对测试结果进行了分析,提出了矿井无线传输优选频段:① 辅助运输大巷无线传输的最佳工作频段为700~910 MHz。② 综采工作面无线传输多径效应严重,无线传输的最佳工作频段为700~1 710 MHz。③ 辅助运输大巷无线传输衰减比综采工作面无线传输衰减小,且随着频率增大,辅助运输大巷与综采工作面无线传输衰减的差值变小。④ 矿井无线传输的最佳工作频段为700~1 710 MHz。

  • 图  1   辅助运输大巷测试现场

    Figure  1.   Test site in auxiliary transportation roadway

    图  2   综采工作面测试现场

    Figure  2.   Test site in fully mechanized working face

    图  3   辅助运输大巷设备安装现场

    Figure  3.   Equipment installation site in auxiliary transportation roadway

    图  4   综采工作面设备安装现场

    Figure  4.   Equipment installation site in fully mechanized working face

    图  5   辅助运输大巷不同频率无线传输衰减曲线

    Figure  5.   Curves of wireless transmission attenuation at different frequencies in auxiliary transportation roadway

    图  6   辅助运输大巷540 m内不同频率无线传输平均衰减曲线

    Figure  6.   Curves of average of wireless transmission attenuation at different frequencies within 540 m of auxiliary transportation roadway

    图  7   综采工作面不同频率无线传输衰减曲线

    Figure  7.   Curves of wireless transmission attenuation at different frequencies in fully mechanized working face

    图  8   综采工作面210 m内不同频率无线传输平均衰减曲线

    Figure  8.   Curves of average wireless transmission attenuation at different frequencies within 210 m of fully mechanized working face

    图  9   辅助运输大巷和综采工作面210 m内不同频率无线传输平均衰减和衰减差值曲线

    Figure  9.   Curves of average attenuation and attenuation difference of wireless transmission at different frequencies within 210 m of auxiliary transportation roadway and fully mechanized working faces

    表  1   辅助运输大巷不同频率无线传输衰减

    Table  1   Wireless transmission attenuation at different frequencies in auxiliary transportation roadway

    收发天线
    距离/m
    辅助运输大巷不同频率无线传输衰减/dB
    700 MHz910 MHz1 200 MHz1 500 MHz1 770 MHz1 950 MHz2 400 MHz2 595 MHz3 550 MHz4 800 MHz5 400 MHz6 000 MHz
    1033.9245.6947.4042.4846.8746.3447.7349.8750.8054.8753.8247.93
    2042.1848.3948.5650.5951.8253.6457.9956.9860.4562.2564.4963.68
    3046.4750.1055.7553.8857.2256.6558.6360.2764.8466.2269.8170.51
    4045.5647.0955.9458.6662.9259.7962.2063.9066.3867.9569.5573.23
    5053.0151.0749.9257.5363.0662.3562.9965.7668.0671.2671.7372.49
    6047.3359.7756.4251.6061.1065.0173.1768.4571.7670.7177.1574.04
    7047.1153.9562.9160.8461.2161.5477.7065.3569.3271.6374.2079.21
    8052.8449.6963.7468.5861.0258.1278.1465.7873.5673.4274.5479.41
    9045.8957.3759.5268.3268.0868.2478.6170.2473.5472.9777.8478.86
    10054.4350.7653.7062.2273.5567.3976.1568.9674.6173.5977.7677.21
    11049.0050.9357.5757.7569.5672.1067.9769.0871.5373.6971.4178.54
    12047.4554.7656.7157.1862.1871.8667.8072.8567.7175.9574.7281.78
    13051.8955.6055.9458.1065.0373.5567.4576.5867.0581.0079.8074.43
    14048.9254.6352.8865.0567.2865.8567.0972.1369.6280.4882.2976.70
    15053.0459.1658.6261.3559.8366.3064.6473.2973.4280.9777.3477.03
    16051.7959.3260.8057.9864.4665.6964.0678.6176.5781.6577.6679.28
    17051.5253.7660.3756.9265.8162.7674.9075.4178.5976.4781.2986.61
    18057.1253.8856.9359.0665.4866.3075.7271.7182.7377.6176.0888.48
    19054.8458.1859.3261.1565.9968.7276.1671.5482.4577.5174.9685.60
    20053.3061.8260.9161.9061.0066.2275.2770.1481.9779.4177.3284.41
    21058.6559.2261.2364.5061.2565.2675.5670.6180.1582.6677.1279.78
    22058.4859.7360.8863.4860.1361.7972.9069.0280.8985.5174.5779.05
    23054.3960.7861.4661.8561.2361.9770.0472.3077.1086.2976.4584.00
    24055.8261.5156.3863.9463.6463.8165.5170.8972.0988.0777.9077.40
    25058.6757.5855.8864.3564.6164.4369.1670.3774.8185.1084.9778.59
    26055.8656.4756.8468.1066.3863.6471.2872.5074.1081.7184.1789.82
    27058.3762.5659.6965.6071.5067.8769.7471.3972.9487.0985.7087.15
    28061.4460.2459.4963.0167.8770.9669.8966.6076.4185.7483.2590.50
    29062.0557.7756.7061.3866.5469.3980.3167.1172.0489.0483.8886.13
    30071.5659.6158.6362.7867.0074.6273.9271.3171.3985.8786.5187.20
    31067.8858.0261.3863.0366.9880.5566.7977.3371.9381.6783.8089.43
    32059.3257.5061.8370.2766.6276.1469.1570.8871.4084.7287.8587.24
    33060.7061.4358.0867.7369.8177.2567.5270.8969.0183.3385.0890.30
    34060.1859.3359.5260.1570.7469.6468.1369.3372.7386.0881.9188.64
    35060.2960.3361.2762.1765.2768.8167.2271.7879.7682.1482.7487.22
    36061.5762.4262.7164.5863.8372.6571.1473.2785.3378.7981.2094.62
    37064.6959.7260.4569.2869.0566.6676.5072.2582.8779.2886.5087.47
    38064.0558.8762.1966.8166.6368.2076.3775.6184.7980.3383.9688.69
    39063.3060.9264.7762.1468.8069.5371.8578.3675.7283.3981.4485.02
    40062.7060.9066.5566.6965.6865.3376.8275.1775.4379.1179.6684.36
    41064.6964.1075.6266.0870.1167.4476.0375.0878.3679.3485.7885.13
    42065.5466.1366.0369.5269.3677.1577.4775.8178.1182.4481.0984.27
    43066.1162.6763.8964.2069.2370.0075.8274.8380.5278.8381.0086.10
    44066.5364.6070.9564.6372.2868.6871.5575.7178.6278.5381.2986.11
    45065.1763.0473.3864.8269.7268.6375.0178.2281.3982.2682.8185.33
    46065.7862.0165.1068.5170.8569.1381.7473.9782.6282.9486.1191.38
    47065.2065.1865.3769.2273.4968.4673.4173.6778.5078.0582.7490.41
    48066.2364.8675.7964.2475.0671.6074.0471.7776.9376.2383.2988.60
    49065.0764.8072.3166.5681.2774.0873.2669.7179.0778.3383.6588.42
    50068.2066.7067.8366.2775.2474.9870.6973.2378.2978.5483.7486.63
    51068.1965.4872.5672.8271.5374.2072.7375.1381.1678.9884.9189.51
    52068.1866.0469.2271.7770.1873.7574.0474.3083.6278.3282.1789.90
    53070.0868.2875.6469.2470.2678.7673.9376.8787.5379.1781.6386.33
    54068.4969.8971.9169.4071.9489.7074.6277.9385.8380.3481.2787.46
    下载: 导出CSV

    表  2   辅助运输大巷540 m内不同频率无线传输平均衰减

    Table  2   Average wireless transmission attenuation at different frequencies within 540 m of auxiliary transportation roadway

    频率/MHz7009101 2001 5001 7701 950
    平均衰减/dB58.1758.9761.5863.1566.4468.21
    频率/MHz2 4002 5953 5504 8005 4006 000
    平均衰减/dB71.2771.3075.4978.8579.5282.92
    下载: 导出CSV

    表  3   综采工作面不同频率无线传输衰减

    Table  3   Wireless transmission attenuation at different frequencies in fully mechanized working face

    收发天线
    距离/m
    综采工作面不同频率无线传输衰减/dB
    700 MHz910 MHz1 200 MHz1 500 MHz1 770 MHz1 950 MHz2 400 MHz2 595 MHz3 550 MHz4 800 MHz5 400 MHz6 000 MHz
    1037.2844.8947.2842.5647.2449.0449.5750.7948.6655.5753.4856.22
    2047.3548.4653.3145.5656.5858.1159.5260.6960.3766.2167.1268.37
    3054.6154.3758.0853.8763.1663.1963.5666.7565.6771.5572.2073.17
    4057.0755.6757.1458.3963.5365.6967.8269.6166.4476.2673.9674.75
    5060.2267.7059.5660.9763.1164.0669.0272.6973.0974.1875.1674.47
    6057.7863.8166.0762.4266.2665.8968.9471.2471.0177.5380.2976.80
    7058.9765.0771.2562.3269.0367.8868.2071.8375.0577.9379.7581.78
    8060.3567.2465.3466.6673.8471.8971.7775.0677.7781.9280.6978.71
    9064.0971.4665.8368.5379.6578.3671.2173.1479.3882.6084.2679.68
    10067.4472.2469.0669.9883.7177.1472.3778.7672.3881.5080.1882.70
    11067.1872.6771.1171.0283.3879.0477.1179.8475.6982.5087.4980.34
    12070.0674.5271.1071.8777.8677.9683.2979.3078.3385.6485.1582.81
    13075.5179.2672.3172.5177.6777.7080.3878.5778.2485.6285.9387.73
    14077.7378.4475.5971.0477.1578.1679.1983.3577.1386.4682.2588.08
    15080.3783.9777.0671.2879.4179.4384.8088.1376.3989.3082.5489.50
    16084.5082.0878.2971.6680.1178.9485.7386.7285.4985.1983.7181.58
    17084.1483.5779.2375.9281.4782.3286.8494.3285.0785.0488.2282.46
    18085.1889.9079.3876.5681.5383.0184.3791.9090.3287.1287.9385.31
    19086.4892.0281.2877.0081.4682.0287.6889.2887.5486.8588.2587.99
    20086.5989.2483.5878.8880.1580.9689.9187.4087.8785.6390.7889.87
    21089.0888.1981.2481.4979.1880.3185.3792.9190.5692.2287.2091.96
    下载: 导出CSV

    表  4   综采工作面210 m内不同频率无线传输平均衰减

    Table  4   Average wireless transmission attenuation at different frequencies within 210 m of fully mechanized working face

    频率/MHz7009101 2001 5001 7701 950
    平均衰减/dB69.8672.2869.9867.2873.6773.19
    频率/MHz2 4002 5953 5504 8005 4006 000
    平均衰减/dB76.0877.7976.8480.5680.6581.02
    下载: 导出CSV

    表  5   辅助运输大巷和综采工作面210 m内不同频率无线传输平均衰减和衰减差值

    Table  5   Average attenuation and attenuation difference of wireless transmission at different frequencies within 210 m of auxiliary transportation roadway and fully mechanized working faces

    位置不同频率无线传输平均衰减/dB
    700 MHz910 MHz1 200 MHz1 500 MHz1 770 MHz1 950 MHz2 400 MHz2 595 MHz3 550 MHz4 800 MHz5 400 MHz6 000 MHz
    辅助运输大巷210 m内49.8254.0556.9158.8462.6163.9969.0468.4571.6773.9274.3376.63
    综采工作面210 m内69.8672.2869.9867.2873.6773.1976.0877.7976.8480.5680.6581.02
    衰减差值/dB19.3218.5512.768.3310.999.406.519.754.636.886.464.05
    下载: 导出CSV
  • [1] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821

    [2] 孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90.

    [3] 孙继平. 智能矿山信息综合承载网与网络切片路由器[J]. 智能矿山,2023,4(1):14-17.

    SUN Jiping. Intelligent mine information comprehensive bearer network and network slicing router[J]. Journal of Intelligent Mine,2023,4(1):14-17.

    [4] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947

    [5] 孙继平,徐卿. 矿井无线中继应急通信系统实现方法[J]. 工矿自动化,2021,47(5):1-8.

    SUN Jiping,XU Qing. Implementation method of mine wireless relay emergency communication system[J]. Industry and Mine Automation,2021,47(5):1-8.

    [6] 孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5. DOI: 10.13272/j.issn.1671-251x.18072

    SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5. DOI: 10.13272/j.issn.1671-251x.18072

    [7] 潘涛,彭铭,徐会军,等. 煤矿井下无线电波防爆安全阈值及测试方法[J]. 智能矿山,2023,4(1):78-82.

    PAN Tao,PENG Ming,XU Huijun,et al. Safety thresholds and test methods for radio wave explosion protection in underground coal mines[J]. Journal of Intelligent Mine,2023,4(1):78-82.

    [8] 邵水才,郭旭东,彭铭,等. 煤矿井下无线传输分析方法[J]. 工矿自动化,2022,48(10):123-128. DOI: 10.13272/j.issn.1671-251x.18038

    SHAO Shuicai,GUO Xudong,PENG Ming,et al. Coal mine underground wireless transmission analysis method[J]. Journal of Mine Automation,2022,48(10):123-128. DOI: 10.13272/j.issn.1671-251x.18038

    [9] 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163. DOI: 10.13272/j.issn.1671-251x.18045

    LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163. DOI: 10.13272/j.issn.1671-251x.18045

    [10] 丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92,144. DOI: 10.13272/j.issn.1671-251x.18044

    DING Xuhai,PAN Tao,PENG Ming,et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92,144. DOI: 10.13272/j.issn.1671-251x.18044

    [11] 孙继平. 煤矿机器人电气安全技术研究[J]. 煤炭科学技术,2019,47(4):1-6. DOI: 10.13199/j.cnki.cst.2019.04.001

    SUN Jiping. Research on electrical safety technology of coal mine robot[J]. Coal Science and Technology,2019,47(4):1-6. DOI: 10.13199/j.cnki.cst.2019.04.001

    [12] 孙继平,张高敏. 矿井应急通信系统[J]. 工矿自动化,2019,45(8):1-5. DOI: 10.13272/j.issn.1671-251x.17483

    SUN Jiping,ZHANG Gaomin. Mine emergency communication system[J]. Industry and Mine Automation,2019,45(8):1-5. DOI: 10.13272/j.issn.1671-251x.17483

    [13] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.

    [14] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4. DOI: 10.13272/j.issn.1671-251x.17517

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4. DOI: 10.13272/j.issn.1671-251x.17517

    [15] 孙继平. 矿井宽带无线传输技术研究[J]. 工矿自动化,2013,39(2):1-5. DOI: 10.7526/J.ISSN.1671-251X.2013.02.001

    SUN Jiping. Research of mine wireless broadband transmission technology[J]. Industry and Mine Automation,2013,39(2):1-5. DOI: 10.7526/J.ISSN.1671-251X.2013.02.001

    [16] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83. DOI: 10.13199/j.cnki.cst.2016.01.004

    SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19-23,83. DOI: 10.13199/j.cnki.cst.2016.01.004

    [17] 孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5. DOI: 10.13272/j.issn.1671-251x.2015.04.001

    SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5. DOI: 10.13272/j.issn.1671-251x.2015.04.001

    [18] 孙继平,张高敏. 基于混合射线追踪的矿井电磁波分析方法[J]. 煤炭学报,2022,47(7):2834-2843. DOI: 10.13225/j.cnki.jccs.2021.1920

    SUN Jiping,ZHANG Gaomin. Mine electromagnetic wave analysis method based on mixed raytracing[J]. Journal of China Coal Society,2022,47(7):2834-2843. DOI: 10.13225/j.cnki.jccs.2021.1920

    [19] 张高敏,刘毅,彭铭. UWR-FDTD矿井电磁波数值分析方法[J]. 煤炭学报,2022,47(11):4157-4166. DOI: 10.13225/j.cnki.jccs.2022.0823

    ZHANG Gaomin,LIU Yi,PENG Ming. Numerical analysis method of the electromagnetic fields in coal mine roadway using UWR-FDTD[J]. Journal of China Coal Society,2022,47(11):4157-4166. DOI: 10.13225/j.cnki.jccs.2022.0823

    [20] 张高敏,刘毅,彭铭. FDTD矿井无线传输特性分析方法研究[J]. 煤炭科学技术,2022,50(11):202-212. DOI: 10.13199/j.cnki.cst.2022-1273

    ZHANG Gaomin,LIU Yi,PENG Ming. Resarch on the FDTD analysis method of wireless transmission characteristics in underground mine[J]. Coal Science and Technology,2022,50(11):202-212. DOI: 10.13199/j.cnki.cst.2022-1273

    [21] 孙继平, 张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化, 2020, 46(5): 1-7.

    SUN Jiping, ZHANG Gaomin. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation. 2020, 46(5): 1-7.

  • 期刊类型引用(9)

    1. 孙继平,彭铭. 室内电磁波传播衰减统计模型用于矿井的适用性研究. 工矿自动化. 2025(02): 1-8 . 本站查看
    2. 李昀,罗伟,尹波,李小亮. 矿井巷道无线传输超表面反射测试分析. 工矿自动化. 2025(02): 41-47+56 . 本站查看
    3. 孙继平,彭铭. 矿井无线电波防爆安全发射功率研究. 工矿自动化. 2024(03): 1-5 . 本站查看
    4. 孙继平,彭铭. 煤矿信息综合承载网标准研究制定. 工矿自动化. 2024(04): 1-8 . 本站查看
    5. 侯录,闫晔,伍宪玉,侯江,赵连喜,高志,邱军军,刘玉明,伍玉娜,谢理,范亦铭. 铀矿井下无线网络技术适用性分析. 铀矿冶. 2024(03): 120-125 . 百度学术
    6. 胡中志,王佩赛. 套管—钻杆窄间隙环形空间电磁波传输特性. 天然气工业. 2024(08): 114-124 . 百度学术
    7. 孙继平,彭铭,刘斌. 矿井无线传输测试分析与矿用5G优选工作频段研究. 工矿自动化. 2024(10): 1-11+20 . 本站查看
    8. 孙继平. 矿井人员位置监测技术. 工矿自动化. 2023(06): 41-47 . 本站查看
    9. 孙继平. 煤矿用5G通信系统标准研究制定. 工矿自动化. 2023(08): 1-8 . 本站查看

    其他类型引用(4)

图(9)  /  表(5)
计量
  • 文章访问数:  887
  • HTML全文浏览量:  123
  • PDF下载量:  99
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-04-03
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-04-24

目录

/

返回文章
返回