基于IBES-XGBoost的矿井巷道摩擦阻力系数预测模型

Prediction of Mine Roadway Friction Resistance Coefficient Using an IBES-XGBoost Model

  • 摘要: 针对传统矿井巷道摩擦阻力系数预测算法存在预测精度不高、寻优过程易陷入局部最优及收敛速度较慢等问题,本文提出了一种基于改进秃鹰搜索算法(IBES)优化极限梯度提升树(XGBoost)的摩擦阻力系数(α)预测模型(IBES-XGBoost)。该IBES算法通过集成反向学习初始化(OBL)以提升初始种群质量,引入混沌序列驱动的参数自适应调整策略以平衡全局探索与局部开发,实施动态自适应变异策略以维持种群多样性并避免早熟收敛,并结合混沌局部搜索(CLS)以增强对最优解的精细挖掘,从而全面提升标准秃鹰搜索算法(BES)的寻优性能。标准基-准函数测试结果充分证实,IBES相较于原始BES及多种其他元启发式算法,在求解精度、收敛速度和稳定性方面均表现出显著优势。利用此高效的IBES对XGBoost模型的关键超参数进行自适应寻优,以多维度巷道特征为输入,并以最小化预测均方根误差RMSE为目标函数,构建了IBES-XGBoost预测模型。实验结果表明:IBES-XGBoost模型在摩擦阻力系数预测任务中表现卓越,其测试集均方根误差RMSE为0.001232,平均绝对误差MAE为0.000868,决定系数R2高达0.985426。该模型不仅显著优于所有对比模型,且相较于次优的BES-XGBoost模型,其RMSE和MAE分别显著降低了49.94%和49.09%,展现出更高的预测准确率和鲁棒性。

     

    Abstract: Addressing the limitations of traditional algorithms for predicting the friction resistance coefficient (α) in mine tunnels—such as low prediction accuracy, susceptibility to local optima during optimization, and slow convergence—this paper proposes an Improved Bald Eagle Search algorithm (IBES) optimized Extreme Gradient Boosting (XGBoost) prediction model, termed IBES-XGBoost. The IBES algorithm enhances the standard Bald Eagle Search (BES) by integrating Opposition-Based Learning (OBL) to improve initial population quality, introducing a chaotic sequence-driven adaptive parameter adjustment strategy to balance global exploration and local exploitation, implementing a dynamic adaptive mutation strategy to maintain population diversity and avoid premature convergence, and incorporating Chaotic Local Search (CLS) to refine the search for optimal solutions. Testing on standard benchmark functions confirms that IBES significantly outperforms the original BES and other metaheuristic algorithms in solution accuracy, convergence speed, and stability. Leveraging this efficient IBES, the key hyperparameters of the XGBoost model are adaptively optimized, utilizing multi-dimensional tunnel characteristics as inputs and minimizing the Root Mean Square Error (RMSE) as the objective function. Experimental results demonstrate that the IBES-XGBoost model excels in friction resistance coefficient prediction, achieving a test set RMSE of 0.001232, MAE of 0.000868, and an R2 of 0.985426. This model significantly outperforms all comparison models; specifically, compared to the suboptimal BES-XGBoost model, it reduces RMSE and MAE by 49.94% and 49.09% respectively, demonstrating superior prediction accuracy and robustness.

     

/

返回文章
返回