基于Web日志的煤矿企业网站个性化推荐服务研究

Research of Personalized Recommendation Service of Coal Enterprises Web Site Based on Web Log

  • 摘要: 为了解决煤矿企业网站用户查找信息难的问题,提出了一种基于Web日志的煤矿企业网站个性化推荐服务模型。该模型应用关联规则对新用户进行页面推荐,应用聚类算法对老用户进行页面推荐;并结合点击网页的次数、网页的浏览时间、雅可系数与最长公共路径系数来度量用户兴趣度的方法,可为用户准确地推荐其感兴趣的页面。测试结果表明,该模型能够有效地对网页资源进行分类并进行个性化推荐。

     

    Abstract: In order to solve problem of difficult finding information for users of coal mine enterprise Web site, the paper put forward a personalized recommendation service model of coal enterprise Web site based on Web log. The model uses association rules to recommend page for new users, and uses clustering algorithm to recommend page for old users. And it measures interesting degree of users with click number of Web page, browsing time of Web page, Jacobian coefficient and the longest public path coefficient of a user to accurately recommend interested pages for the user. The test results showed that the model can classify Web resources and provide personalized recommendation.

     

/

返回文章
返回