面向遥感矿区作业机械小目标识别的 CDMG-YOLO算法

CDMG-YOLO Algorithm for Small Mining Machinery Targets in Remote Sensing

  • 摘要: 在无人机遥感图像中准确检测矿山机械是实现露天矿智能化监测的关键。针对无人机露天矿图像中异质机械目标识别的关键挑战——目标尺度变化显著、背景干扰复杂以及小目标易漏检等问题,本文提出 CDMG-YOLO,一种基于YOLOv11n的结构优化轻量级遥感目标检测模型。模型通过新增 P2 检测头、引入D-C3k2可变形大核卷积模块、采用CAFM与MCAM 双重注意力机制,以及基于GHM的损失函数,实现了对小目标的高精度识别和复杂背景下的稳健检测。在自建露天矿山数据集及 LEVIR 数据集上的实验表明,CDMG-YOLO精度达0.859,召回率达到0.751,mAP@0.5为0.697,mAP@0.5-0.95为0.547,超越现有主流轻量级YOLO变体,同时保持了紧凑的模型规模,仅需3.1M参数和12.7GFLOPs运算量。实验结果验证了该方法对复杂矿区遥感小目标检测任务的鲁棒性和适用性。

     

    Abstract: Accurate detection of mining machinery in UAV remote sensing imagery is crucial for intelligent monitoring of open-pit mines. To address key challenges in identifying heterogeneous machinery targets in UAV-captured open-pit mine images—namely significant variations in target scales, complex background interference, and frequent missed detections of small targets—this paper proposes CDMG-YOLO, a structurally optimized lightweight remote sensing object detection model based on YOLOv11n. The model incorporates a P2 detection head, a D-C3k2 deformable large-kernel convolution module, a dual-attention mechanism combining CAFM and MCAM, and a GHM-based loss function to achieve high-precision detection of small targets and robust performance under complex backgrounds. Experiments on a self-built open-pit mine dataset and the publicly available LEVIR dataset show that CDMG-YOLO achieves a precision of 0.859, mAP@0.5 of 0.697, and mAP@0.5-0.95 of 0.547, outperforming current mainstream lightweight YOLO variants while maintaining a compact model size with only 3.1 million parameters and 12.7 GFLOPs. The results demonstrate the robustness and applicability of the proposed method for small-object detection in complex mining areas using remote sensing imagery..

     

/

返回文章
返回