神经网络在矿井突水水源判别中的应用

吴岩, 余智超

吴岩, 余智超. 神经网络在矿井突水水源判别中的应用[J]. 工矿自动化, 2011, 37(10): 60-62.
引用本文: 吴岩, 余智超. 神经网络在矿井突水水源判别中的应用[J]. 工矿自动化, 2011, 37(10): 60-62.
WU Yan, YU Zhi-chao. Application of Neural Network in Water Source Distinguishing of Mine Water Inrush[J]. Journal of Mine Automation, 2011, 37(10): 60-62.
Citation: WU Yan, YU Zhi-chao. Application of Neural Network in Water Source Distinguishing of Mine Water Inrush[J]. Journal of Mine Automation, 2011, 37(10): 60-62.

神经网络在矿井突水水源判别中的应用

详细信息
  • 中图分类号: TD745.21

Application of Neural Network in Water Source Distinguishing of Mine Water Inrush

  • 摘要: 提出了一种采用改进的SOM神经网络对矿井突水水源进行判别的方法。该方法把水质中的Na+、K+、Ca2+、Mg2+、Cl-、SO2-4和HCO-3等7种离子的含量作为判断因素,结合改进的SOM神经网络模型,对20个水源样品进行分类。实验结果表明,该方法的误判率为0,能够准确地判别矿井突水水源。
    Abstract: The paper proposed a method of using improved SOM neural network to distinguish water source of mine water inrush. The method takes seven irons contents of Na+, K+, Ca2+, Mg2+, Cl-, SO2-4 and HCO-3 in water as distinguished factors and combines with improved SOM neural network model to classify 20 samples of water source. The experiment result showed that mistake rate of the method is 0 and can distinguish water source of mine water inrush accurately.
计量
  • 文章访问数:  50
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-10-09

目录

    /

    返回文章
    返回