基于改进特征提取算法及胶囊网络的设备故障诊断研究
Research on equipment fault diagnosis based on improved feature extraction algorithm and capsule network
-
摘要: 机电设备工作过程中产生的信号多为非平稳信号,特征提取难度大,针对该问题,将经验模态分解(EMD)与自回归(AR)模型相结合,利用AR模型的优点降低EMD提取特征的难度,用AR模型的自回归参数及残差方差构建特征向量。针对传统粒子群算法寻优效率较低的问题,对粒子群算法的惯性权重因子、学习因子及粒子速度迭代公式进行改进,提高算法的寻优能力,并通过仿真分析验证了改进算法的优越性。结合改进特征提取方法、改进粒子群算法及胶囊网络建立故障诊断模型,通过煤矿通风机现场真实数据进行试验验证,结果表明基于改进特征提取算法及胶囊网络的设备故障诊断方法具有较高的准确率,可提高煤矿井下机电设备故障诊断效率。
下载: