融合语义路标的煤矿井下多传感器建图与定位方法

A Multi-Sensor Mapping and Localization Method Fusing Semantic Landmarks in Coal Mines

  • 摘要: 针对煤矿井下环境特征稀疏、重复度高导致SLAM定位误差累积显著和重定位耗时长的问题,本文提出一种融合语义路标的多传感器建图与定位方法。通过建立巷道结构特征与路标编码信息的映射关系,构建包含空间几何特征和自定义语义标签的井下语义地图。借助路标完成初始位姿计算,有效抑制巷道重复特征干扰,大幅缩短重定位耗时;同时,在运行过程中利用语义路标实现机器人位姿的动态校正,可显著消除SLAM累积误差。为验证系统性能,搭建试验场景并在矿用冲尘机器人上进行部署,结果表明:系统建图平均误差2.0cm,静态定位误差小于3.5厘米,动态定位误差小于15.3厘米,重定位平均耗时3.3s。

     

    Abstract: Aiming at the problems of significant cumulative SLAM positioning errors and prolonged relocalization time caused by the sparse and highly repetitive environmental features in coal mine underground environments, this paper proposes a multi-sensor mapping and localization technology integrated with semantic landmarks. By establishing a mapping relationship between roadway structural features and landmark encoding information, an underground semantic map incorporating spatial geometric features and custom semantic labels is constructed. Utilizing landmarks for initial pose calculation effectively suppresses interference from repetitive roadway features and substantially reduces relocalization time. Meanwhile, dynamic correction of robot poses achieved through semantic landmarks significantly eliminates cumulative SLAM errors. To validate system performance, experimental scenarios were set up and deployed on a dust-flushing robot. The results demonstrate an average mapping error of 2.0 cm, static positioning errors below 3.5 cm, dynamic positioning errors below 15.3 cm, and an average relocalization time of 3.3 seconds.

     

/

返回文章
返回