基于BP神经网络PID控制的PMLSM调速系统设计

余琼霞, 王福忠

余琼霞, 王福忠. 基于BP神经网络PID控制的PMLSM调速系统设计[J]. 工矿自动化, 2011, 37(5): 34-37.
引用本文: 余琼霞, 王福忠. 基于BP神经网络PID控制的PMLSM调速系统设计[J]. 工矿自动化, 2011, 37(5): 34-37.
YU Qiong-xia, WANG Fu-zhong. Design of Speed-regulation System of PMLSM Based on BP Neural Network PID Control[J]. Journal of Mine Automation, 2011, 37(5): 34-37.
Citation: YU Qiong-xia, WANG Fu-zhong. Design of Speed-regulation System of PMLSM Based on BP Neural Network PID Control[J]. Journal of Mine Automation, 2011, 37(5): 34-37.

基于BP神经网络PID控制的PMLSM调速系统设计

基金项目: 

:国家自然科学基金资助项目(61074095),河南省科技厅基金项目(094300510015)

详细信息
  • 中图分类号: TD614

Design of Speed-regulation System of PMLSM Based on BP Neural Network PID Control

  • 摘要: 针对永磁直线同步电动机提升系统的非线性、时变性、易受扰动等特性,在所建立的永磁直线同步电动机d-q轴动态数学模型的基础上,设计了一种改进型BP神经网络PID控制的PMLSM调速系统。该系统将BP神经网络算法中固定的学习速率改为自适应可调,同时添加动量项以减小学习过程中的振荡趋势,极大地改善了算法的收敛速度,避免了网络落入局部最小值的结果。仿真结果表明,使用改进的BP神经网络PID控制器可使PMLSM调速系统的调节时间和超调量大幅减小,响应速度加快,使提升系统具备较好的动态性能和较强的鲁棒性。
    Abstract: For characteristics of nonlinearity, time-varying volatility and nonstationarity to disturbance of hoisting system of PMLSM, an improved PMLSM speed-regulation system was designed on basis of established PMLSM d-q axis dynamic mathematical model and BP neural network PID control. The system modifies the fixed learning rate in BP neural network to a self-adaptive one, and adds momentum to reduce oscillation tendency in learning process, so it greatly improves convergence speed and avoid that network falls into a local minimum. The simulation result showed that using the improved BP neural network PID controller can make PMLSM speed-regulation system reduce adjusting time and overshoots greatly and accelerat response speed, and make the hoist system have better dynamic performance and robustness.
计量
  • 文章访问数:  45
  • HTML全文浏览量:  6
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-05-09

目录

    /

    返回文章
    返回