基于改进粒子群优化算法的PID控制器参数优化

Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm

  • 摘要: 针对PID控制器参数整定问题,提出一种基于改进粒子群优化算法的优化方法。该方法在实数编码及设定参数搜索空间的基础上,采用基于指数曲线的非线性惯性权值递减策略,以较大幅度地提高算法的收敛速度和精度;嵌入基于差分进化算法变异算子的局部搜索策略,以有效提高粒子个体的适应性和群体的多样性,改善解的质量,同时增强算法全局空间探索和局部区域改良能力的平衡。仿真结果表明,该方法与传统和智能算法相比较,所得到的控制器参数能够使控制系统获得更好的动态响应特性和满意的控制效果。

     

    Abstract: An optimization method based on modified particle swarm optimization(PSO) algorithm was proposed for tuning PID controller parameters.On the basis of real coding and setting search space of parameters,the method uses idea of decreasing inertia weight of an exponential curve to greatly improve algorithm’s convergence speed and accuracy,and embeds local search strategy based on mutation operator of differential evolution algorithm to raise flexibility of individual particle and diversity of population,improve solution quality,and enhance the balance between the algorithm’s global space exploration and local area improved capacity.The simulation results showed that the controller parameters from the new solution can make control system have better dynamic response characteristics and satisfactory control effect than traditional and intelligent algorithm.

     

/

返回文章
返回