图象检索中的ISOMAP算法与LLE算法及其比较

ISOMAP Algorithm and LLE Algorithm in Image Retrieval and Their Compariso

  • 摘要: 高维数据空间流形中有意义的低维嵌入是一个经典难题。ISOMAP是一种有效的基于流形理论的非线性降维方法,它不仅能够揭示高维数据的内在结构,还能够发现潜在的低维参数空间。ISOMAP的理论基础是假设在高维数据空间和低维参数空间存在等距映射,但并没有给出证明。而LLE算法能够实现高维输入数据点映射到一个全局低维坐标系,同时保留了邻接点之间的关系,这样,固有的几何结构就能够得到保留。LLE算法不仅能够有效地发现数据的非线性结构,同时还具有平移、旋转等不变特性。通过这2种算法的比较得出了结论,并提出了部分问题供后续探讨。

     

/

返回文章
返回