液压支架跟机移架控制异常工况模式识别方法

Method for recognizing abnormal operation patterns in hydraulic support machine-following and shifting control

  • 摘要: 智采工作面在液压支架自动跟机时,由于底板、液压系统及电液控制系统等多方面因素的影响,会出现丢架、直线度不平整等异常工况。当前针对各类异常工况的识别分析主要集中于自动跟机结束后,仅通过人工调整进行单一判断,不利于快速判断需人工调控的液压支架架号。针对上述问题,提出了一种液压支架跟机移架控制异常工况模式识别方法,将异常工况识别范围提前至支架降柱后的移架阶段,得出停机波动型、移架超时型和行程异常型3类异常工况模式。首先,采集液压支架油缸行程与立柱压力数据。其次,对数据进行预处理,包括异常值处理、相邻数据求差及依据差值正负合并数据。然后,采用基于行程−压力−时间分析的移架异常识别算法对停机波动型与移架超时型模式进行识别;采用决策树模型对行程异常型模式进行识别。最后,提取移架动作起始及结束时间、当前支架行程的最大与最小值、当前支架与两侧支架的行程差6项特征,将其中移架动作起始与结束时间输入移架异常识别算法,进行行程波动识别,对具有行程波动的数据分别进行压力波动及移架动作时间的判别,识别出停机波动型与移架超时型模式;将后续4项行程类特征输入决策树模型,进行行程异常类模式的识别。实际测试结果表明:该识别方法对停机波动型模式与移架超时型模式的识别精确率为100%,召回率达95%以上;对于行程异常突降型模式的识别精确率为100%,召回率为97.87%;行程异常均小型模式的识别精确率为95.29%,召回率为81%,能够较好地对液压支架跟机移架控制的异常工况进行识别。

     

    Abstract: In intelligent mining faces, abnormal operating conditions such as support loss and poor linearity may occur during automatic follow-up of hydraulic supports, due to various factors including the floor conditions, hydraulic system, and electro-hydraulic control system. Currently, the identification and analysis of these abnormal conditions mainly occur after the automatic follow-up process, relying solely on manual adjustments for judgment. This approach is inefficient for quickly determining which hydraulic support units require manual intervention. To address this issue, a method was proposed for identifying abnormal condition patterns in machine-following and shifting control of hydraulic supports. This method shifted the scope of anomaly detection to the shifting stage after the support has lowered its columns, and classifies abnormal patterns into three types: shutdown fluctuation type, over-time shifting type, and stroke anomaly type. Data on hydraulic support cylinder stroke and leg pressure were collected. Then, data preprocessing was performed, including outlier removal, calculation of differences between adjacent data points, and merging data based on the sign of the differences. An anomaly recognition algorithm based on stroke-pressure-time analysis was used to identify the shutdown fluctuation and over-time shifting types. A decision tree model was employed to detect stroke anomaly patterns. Six key features were extracted: start and end time of the shifting action, maximum and minimum values of the current support's stroke, and the stroke differences between the current support and its neighboring supports. The start and end times were fed into the stroke anomaly recognition algorithm to detect fluctuation patterns. For data with stroke fluctuations, further analysis of pressure variation and shifting action duration was conducted to identify shutdown fluctuation and over-time shifting types. The remaining four stroke-related features were input into the decision tree model to identify stroke anomaly patterns. Experimental results show that the proposed method achieved a precision of 100% and recall rate of over 95% for identifying shutdown fluctuation and over-time shifting types. For the sudden drop type stroke anomaly, the method achieved a precision of 100% and a recall rate of 97.87%. For the uniform small stroke anomaly, the precision was 95.29% and the recall rate was 81%. These results demonstrate that the method effectively identifies abnormal conditions in hydraulic support machine-following and shifting control.

     

/

返回文章
返回