基于工业互联网平台的煤矿跨系统统一数据服务研究与应用

弯茂全, 李昊, 王浩

弯茂全,李昊,王浩. 基于工业互联网平台的煤矿跨系统统一数据服务研究与应用[J]. 工矿自动化,2025,51(3):96-104. DOI: 10.13272/j.issn.1671-251x.2024110036
引用本文: 弯茂全,李昊,王浩. 基于工业互联网平台的煤矿跨系统统一数据服务研究与应用[J]. 工矿自动化,2025,51(3):96-104. DOI: 10.13272/j.issn.1671-251x.2024110036
WAN Maoquan, LI Hao, WANG Hao. Research and application of unified cross-system data services for coal mines based on industrial internet platforms[J]. Journal of Mine Automation,2025,51(3):96-104. DOI: 10.13272/j.issn.1671-251x.2024110036
Citation: WAN Maoquan, LI Hao, WANG Hao. Research and application of unified cross-system data services for coal mines based on industrial internet platforms[J]. Journal of Mine Automation,2025,51(3):96-104. DOI: 10.13272/j.issn.1671-251x.2024110036

基于工业互联网平台的煤矿跨系统统一数据服务研究与应用

基金项目: 国家自然科学基金资助项目(52304169);天地科技股份有限公司科技创新创业资金专项重点项目(2024-TD-ZD014-01)。
详细信息
    作者简介:

    弯茂全(1994—),男,河南舞阳人,硕士,主要从事煤矿智能化、矿山人工智能及矿山软件平台的研究与应用工作,E-mail:wanmq1121@hotmail.com

    通讯作者:

    李昊(1983—),男,北京人,博士,主要从事煤矿无人化开采及智能控制方面的研究工作,E-mail:lihao@ccteg-bigdata.com

  • 中图分类号: TD67

Research and application of unified cross-system data services for coal mines based on industrial internet platforms

  • 摘要:

    目前工业互联网平台在煤矿应用中存在无法充分发挥数据的价值,数据在不同系统间的流通受限制,在处理跨系统数据交互时,不同子系统之间缺乏统一的权限管理机制,增加了数据被篡改和非授权访问的风险等问题。基于工业互联网平台提出了一种煤矿跨系统统一数据服务体系。通过涵盖监测监控级、生产管理级与运营管理级5层跨系统数据模型(主题域分组−主题域−业务对象−逻辑实体−属性),构建“接口层−服务层−存储层”协同架构,集成协议动态适配引擎、容器化微服务部署及低代码接口配置工具,设计动态分级鉴权机制和全链路行为监控体系,实现多源异构数据的标准化接入、安全流转与精准交互。测试结果表明,与传统的分布式接口模式相比,基于工业互联网平台的煤矿跨系统统一数据服务体系的数据平均响应时间从270 ms优化至148 ms,数据加工准确率提升至99.57%。实际应用结果表明,在持续12 000 h的运行中,服务可用性达到99.6%,数据一致性误差低于0.1%。

    Abstract:

    Currently, the application of industrial internet platforms in coal mines faces issues such as the inability to fully utilize the value of data, limited data flow between different systems, and a lack of a unified permission management mechanism for cross-system data interactions. These issues increase the risks of data tampering and unauthorized access. A unified cross-system data service system for coal mines was proposed based on an industrial internet platform. The system comprised a five-layer cross-system data model (thematic domain grouping-thematic domain-business object-logical entity-attribute), which covered the monitoring and control level, production management level, and operation management level. It established an "Interface Layer-Service Layer-Storage Layer" collaborative architecture. The system integrated a dynamic protocol adaptation engine, containerized microservice deployment, and low-code interface configuration tools. Additionally, it employed a dynamic hierarchical authentication mechanism and an end-to-end behavior monitoring system. These features together enabled standardized access, secure transfer, and precise interaction of multi-source heterogeneous data. Test results showed that, compared to the traditional distributed interface model, the proposed system optimized average data response time from 270 ms to 148 ms and improved data processing accuracy to 99.57%. Practical application results indicated that over 12,000 hours of continuous operation, the service availability reached 99.6%, and data consistency errors were below 0.1%.

  • 图  1   煤矿跨系统数据模型

    Figure  1.   Cross-system data model for coal mines

    图  2   跨系统统一数据服务整体架构

    Figure  2.   Overall architecture of unified across-system data services

    图  3   统一数据交互规则流程

    Figure  3.   Unified data interaction rules and process

    图  4   身份识别与鉴权流程

    Figure  4.   Identity identification and authentication process

    图  5   平均数据响应时间

    Figure  5.   Average data response time

    图  6   加工数据的准确率

    Figure  6.   Accuracy of data processing

    图  7   平均CPU利用率

    Figure  7.   Average CPU utilization

    图  8   平均内存利用率

    Figure  8.   Average memory utilization

    图  9   性能测试比较

    Figure  9.   Performance test comparison

    表  1   煤矿生产子系统分类

    Table  1   Classification of coal mine production subsystem

    系统层级 数据来源 数据通信特征 数据结构 数据存储方式
    监测监控级 以设备、环境监测传感器和音视频采集装置为主 Modbus协议、串口协议、OPC UA协议等 主要为半结构化数据、非结构化文本、音视频等 JSON,XML等半结构化数据,主要采用非关系型数据库
    生产过程管理级 以MES、安全管理等生产过程管控系统为主 消息中间件、流媒体、MQTT等 包括结构化数据、半结构化数据、非结构化数据 关系型/非关系型数据库并存
    运营管理级 以财务、人力、物资、后勤等
    管理信息系统为主
    HTTP协议、FTP协议、SMTP协议等 以结构化数据表为主,辅以
    少量文本、图片、语音、视频
    关系型数据库为主
    下载: 导出CSV

    表  2   服务器的配置及功能

    Table  2   Configuration and functions of servers

    序号 用途 操作系统 CPU/核 内存/G 硬盘 数量/个
    1 数据存储服务 CentOS 6.8 64 128 16T HDD 3
    2 数据接入服务 CentOS 6.8 32 64 1T SSD 1
    3 数据输出服务 CentOS 6.8 32 64 1T SSD 1
    4 数据缓存服务 CentOS 6.8 32 64 1T SSD 1
    5 数据鉴权服务 CentOS 6.8 32 64 1T SSD 1
    下载: 导出CSV

    表  3   测试场景中的系统类型和数据特性

    Table  3   System types and data characteristics in test scenario

    序号 子系统名称 数据频率 数据类型 数据尺寸/KiB 平均速度/
    (B·s−1
    1 掘进 ms 时序 130 3 787
    2 综采 ms 时序 110 3 204
    3 主煤流 ms 时序 50 1 456
    4 辅助运输 ms 时序 40 1 165
    5 人员定位 s 时序 70 2 039
    6 环境监测 s 时序 80 2 330
    7 工业视频 实时 84100 250 838 021
    8 通信联络 实时 1500 4 473 924
    9 双预控 min 结构化/非结构化 930 27 088
    10 生产执行 min 结构化 384 109
    11 财务管理 min 结构化 257 73
    12 物资管理 min 结构化 367 104
    下载: 导出CSV
  • [1] 王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.

    [2] 顾清华,江松,李学现,等. 人工智能背景下采矿系统工程发展现状与展望[J]. 金属矿山,2022(5):10-25.

    GU Qinghua,JIANG Song,LI Xuexian,et al. Development status and prospect of mining system engineering under the background of artificial intelligence[J]. Metal Mine,2022(5):10-25.

    [3] 王家臣,刘云熹,李杨,等. 矿业系统工程60年发展与展望[J]. 煤炭学报,2024,49(1):261-279.

    WANG Jiachen,LIU Yunxi,LI Yang,et al. 60 years development and prospect of mining systems engineering[J]. Journal of China Coal Society,2024,49(1):261-279.

    [4]

    WANG Guofa,XU Yongxiang,REN Huaiwei. Intelligent and ecological coal mining as well as clean utilization technology in China:review and prospects[J]. International Journal of Mining Science and Technology,2019,29(2):161-169. DOI: 10.1016/j.ijmst.2018.06.005

    [5] 韩建国. 神华智能矿山建设关键技术研发与示范[J]. 煤炭学报,2016,41(12):3181-3189.

    HAN Jianguo. Key technology research and demonstration of intelligent mines in Shenhua Group[J]. Journal of China Coal Society,2016,41(12):3181-3189.

    [6] 鲍久圣,张可琨,王茂森,等. 矿山数字孪生MiDT:模型架构、关键技术及研究展望[J]. 绿色矿山,2023(1):166-177.

    BAO Jiusheng,ZHANG Kekun,WANG Maosen,et al. Mine Digital Twin:model architecture,key technologies and research prospects[J]. Journal of Green Mine,2023(1):166-177.

    [7]

    LI Jianguo,ZHAN Kai. Intelligent mining technology for an underground metal mine based on unmanned equipment[J]. Engineering,2018,4(3):381-391.

    [8] 张帆,葛世荣. 矿山数字孪生构建方法与演化机理[J]. 煤炭学报,2023,48(1):510-522.

    ZHANG Fan,GE Shirong. Construction method and evolution mechanism of mine digital twins[J]. Journal of China Coal Society,2023,48(1):510-522.

    [9] 王立兵,任予鑫,马昆,等. 多源数据融合智能识别煤矿山场景特征AI模型[J]. 煤炭学报,2023,48(12):4617-4631.

    WANG Libing,REN Yuxin,MA Kun,et al. AI model for intelligent recognition of coal mine scene features through multi-source data fusion[J]. Journal of China Coal Society,2023,48(12):4617-4631.

    [10] 贺耀宜,陈晓晶,郝振宇,等. 智能矿山低代码工业物联网平台设计[J]. 工矿自动化,2023,49(6):141-148,174.

    HE Yaoyi,CHEN Xiaojing,HAO Zhenyu,et al. Design of intelligent mine low code industrial IoT platform[J]. Journal of Mine Automation,2023,49(6):141-148,174.

    [11] 李荟,韩晓飞,朱万成,等. 基于多源信息融合的矿山边坡滑坡灾害研究现状与展望[J]. 工矿自动化,2024,50(6):6-15.

    LI Hui,HAN Xiaofei,ZHU Wancheng,et al. Current status and prospects of research on landslide disasters in mine slopes based on multi-source information fusion[J]. Journal of Mine Automation,2024,50(6):6-15.

    [12]

    MENON K,KÄRKKÄINEN H,WUEST T,et al. Industrial Internet platforms:a conceptual evaluation from a product lifecycle management perspective[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2019,233(5):1390-1401. DOI: 10.1177/0954405418760651

    [13]

    AGARWAL N,BREM A. Strategic business transformation through technology convergence:implications from General Electric's industrial Internet initiative[J]. International Journal of Technology Management,2015,67(2/3/4):196-214. DOI: 10.1504/IJTM.2015.068224

    [14]

    ZHANG Xianyu,MING Xinguo. A comprehensive industrial practice for industrial Internet platform (IIP):general model,reference architecture,and industrial verification[J]. Computers & Industrial Engineering,2021,158. DOI: 10.1016/J.CIE.2021.107426.

    [15] 肖祥武,王丰,王晓辉,等. 面向工业互联网的智慧电厂仿生体系架构及信息物理系统[J]. 电工技术学报,2020,35(23):4898-4911.

    XIAO Xiangwu,WANG Feng,WANG Xiaohui,et al. Bionic structure and cyber-physical system for intelligent power plant oriented to the industrial internet[J]. Transactions of China Electrotechnical Society,2020,35(23):4898-4911.

    [16] 蒋敏,郑力. 面向航空协同制造的工业互联网架构研究与应用[J]. 中国科学:技术科学,2022,52(1):3-13.

    JIANG Min,ZHENG Li. Industrial internet architecture for collaborative manufacturing of aviation equipment[J]. Scientia Sinica(Technologica),2022,52(1):3-13.

    [17] 许继平,孔德政,王昭洋,等. 基于工业互联网的大米供应链数字孪生系统构建[J]. 农业机械学报,2023,54(3):372-381. DOI: 10.6041/j.issn.1000-1298.2023.03.038

    XU Jiping,KONG Dezheng,WANG Zhaoyang,et al. Construction of digital twin system of rice supply chain based on industrial internet[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):372-381. DOI: 10.6041/j.issn.1000-1298.2023.03.038

    [18]

    XU Chi,YU Haibin,JIN Xi,et al. Industrial Internet for intelligent manufacturing:past,present,and future[J]. Frontiers of Information Technology & Electronic Engineering,2024,25(9):1173-1192.

    [19] 柴天佑,刘强,丁进良,等. 工业互联网驱动的流程工业智能优化制造新模式研究展望[J]. 中国科学:技术科学,2022,52(1):14-25.

    CHAI Tianyou,LIU Qiang,DING Jinliang,et al. Perspectives on industrial-internet-driven intelligent optimized manufacturing mode for process industries[J]. Scientia Sinica(Technologica),2022,52(1):14-25.

    [20] 李首滨. 煤炭工业互联网及其关键技术[J]. 煤炭科学技术,2020,48(7):98-108.

    LI Shoubin. Coal industry internet and its key technologies[J]. Coal Science and Technology,2020,48(7):98-108.

    [21] 申斌学. 基于矿山工业互联网的选煤厂智能管控体系设计与关键技术[J]. 煤炭科学技术,2024,52(9):210-219. DOI: 10.12438/cst.20240873

    SHEN Binxue. Design and key technology of intelligent management and control system for coal preparation plant based on mining industry internet[J]. Coal Science and Technology,2024,52(9):210-219. DOI: 10.12438/cst.20240873

    [22] 张建中,郭军. 智慧矿山工业互联网技术架构探讨[J]. 煤炭科学技术,2022,50(5):238-246.

    ZHANG Jianzhong,GUO Jun. Discussion on industrial internet technology framework of smart mine[J]. Coal Science and Technology,2022,50(5):238-246.

    [23] 谢嘉成,王学文,郝尚清,等. 工业互联网驱动的透明综采工作面运行系统及关键技术[J]. 计算机集成制造系统,2019,25(12):3160-3169.

    XIE Jiacheng,WANG Xuewen,HAO Shangqing,et al. Operating system and key technologies of transparent fully mechanized mining face driven by industrial Internet[J]. Computer Integrated Manufacturing Systems,2019,25(12):3160-3169.

    [24] 周鑫,周云成,金树军,等. 煤炭工业互联网标识解析二级节点系统架构研究[J]. 煤矿安全,2022,53(3):140-145.

    ZHOU Xin,ZHOU Yuncheng,JIN Shujun,et al. Research on secondary node system architecture of coal industry internet identity resolution[J]. Safety in Coal Mines,2022,53(3):140-145.

  • 期刊类型引用(5)

    1. 曹鹏. 矿用永磁传动装置半物理仿真系统的研究. 煤矿机电. 2023(02): 1-4+9 . 百度学术
    2. 南鹏飞. 基于改进天牛须算法和永磁同步电机的采煤机牵引电机控制. 煤矿机械. 2023(09): 33-36 . 百度学术
    3. 刘金伟,李冬冬,张斌. 永磁传动技术对比分析及同步偶合器磁场设计. 煤矿现代化. 2020(05): 133-136 . 百度学术
    4. 王鹏,刘鑫,赵虎. 限矩型磁力耦合器在柳塔煤矿的应用. 煤矿安全. 2020(10): 272-275 . 百度学术
    5. 张建公. 基于方波电压注入的刮板机重载启动控制策略研究. 煤炭科学技术. 2019(02): 136-142 . 百度学术

    其他类型引用(0)

图(9)  /  表(3)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 5
出版历程
  • 收稿日期:  2024-11-11
  • 修回日期:  2025-03-17
  • 网络出版日期:  2025-03-18
  • 刊出日期:  2025-03-14

目录

    /

    返回文章
    返回