Review of construction and reasoning methods for knowledge graphs in coal mining domain
-
摘要:
将煤矿领域来自不同数据源的知识进行抽取,形成知识网络,借助推理技术可辅助煤矿设备故障诊断、安全风险实时预警与处置、灾害事故原因分析、应急救援方案生成及生产组织和运营管理决策支持,从而推进智慧矿山建设。梳理了知识图谱尤其是煤矿领域知识图谱的研究现状,介绍了以知识为驱动的人工智能发展历程、基于知识图谱的人工智能系统架构、知识图谱的主要类型和代表性工作,剖析了煤矿领域已有知识图谱的知识建模情况、知识图谱构建方式、知识图谱使用方式和成熟度。从实体识别、关系抽取、知识图谱融合与纠错、知识图谱推理等方面,对煤矿领域知识图谱构建与推理技术面临的挑战进行了分析,指出针对上述挑战,需研究基于跨度的实体识别方法、基于多堆叠分类器的关系抽取方法、实体的嵌入表示方法、实体间关系的一致性约束建模方法;煤矿领域知识图谱推理技术的研究需以应用为驱动,与业务场景密切结合;煤矿领域存在大量图像、视频等多模态数据,未来可构建煤矿领域多模态知识图谱,还可融入时间信息构建煤矿领域时序知识图谱。
Abstract:Knowledge from diverse data sources in the coal mining domain is extracted to construct a knowledge network. Leveraging reasoning technologies, this network supports equipment fault diagnosis, real-time safety risk warnings and responses, disaster cause analysis, emergency rescue planning, production organization, and operational decision-making, thereby advancing intelligent mining. This paper reviews the research progress on knowledge graphs, with a focus on their applications in coal mining. It discusses the evolution of knowledge-driven artificial intelligence, the architecture of AI systems based on knowledge graphs, primary types of knowledge graphs, and representative studies. The paper examines knowledge modeling, construction, utilization, and maturity of existing knowledge graphs in the coal mining domain. Key challenges in knowledge graph construction and reasoning, spanning entity recognition, relation extraction, graph fusion and error correction, and reasoning, are analyzed. To address these challenges, proposed solutions include span-based entity recognition methods, multi-stack classifier-based relation extraction, entity embedding techniques, and consistency constraint modeling for entity relationships. Research on reasoning techniques should remain application-driven and tightly integrated with business scenarios. Given the abundance of multimodal data such as images and videos in the coal mining field, future efforts could focus on constructing multimodal and temporal knowledge graphs by incorporating time information.
-
-
表 1 煤矿领域知识图谱代表性工作技术成熟度情况
Table 1 Technological maturity of representative work of knowledge graph in coal mining domain
应用场景 代表性工作 知识建模情况 知识图谱构建方式 知识图谱使用方式 成熟度评价 煤矿灾害
防治许娜等[29] 依据专家经验确定概念类别和关系类型 自动构建 仅以查询方式使用知识图谱 ★★★☆☆ 罗香玉等[30] 依据专家经验确定概念类别和关系类型 自动构建 仅以查询方式使用知识图谱 ★★★☆☆ 刘鹏等[31] 仅对相关概念进行分类,没有定义关系类型 自动构建 仅以查询方式使用知识图谱 ★★☆☆☆ 刘永立等[32] 概念类别和关系类型均未明确定义 人工构建 仅探讨知识图谱推理的潜在应用,未实现推理 ★☆☆☆☆ 吴克介[33] 依据专家经验确定概念类别和关系类型 自动构建 仅以查询方式使用知识图谱 ★★★☆☆ 煤矿机电
设备维护李哲等[34] 依据专家经验确定概念类别和关系类型 人工和自动构建
相结合仅探讨知识图谱推理的潜在应用,未实现 ★★★☆☆ 韩一博等[35] 依据专家经验确定概念类别和关系类型 自动构建 未提及 ★★☆☆☆ 冯银辉等[36] 依据专家经验确定概念类别和关系类型 自动构建 仅以查询方式使用知识图谱 ★★★☆☆ 表 2 知识图谱构建与推理技术面临的主要挑战
Table 2 Main challenges in knowledge graph construction and reasoning techniques
技术名称 所属类别 主要挑战 技术难点描述 实体识别 知识图谱构建基础技术 嵌套实体的识别 单个字可同时属于多个实体,基于字分类器的实体识别方法无法适用 关系抽取 知识图谱构建基础技术 实体重叠条件下的关系抽取 单个实体可同时属于多个三元组,基于实体对分类器的关系抽取方法无法适用 知识图谱融合 知识图谱构建完善技术 异构知识图谱间的实体对齐 基于知识图谱结构的实体嵌入表示方法无法适用 知识图谱纠错 知识图谱构建完善技术 实体间关系的一致性约束建模 一致性约束建模的完备性评价 基于图神经网络的
知识图谱推理知识图谱推理技术 实体的嵌入表示 多个图卷积层在增强图特征提取充分性的同时,会造成实体嵌入表示误差的传播 基于强化学习的
知识图谱推理知识图谱推理技术 多跳推理下的路径选择 指数级增长的搜索空间带来的计算复杂性 -
[1] 王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202. WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.
[2] 张志刚,张庆华,刘军. 我国煤与瓦斯突出及复合动力灾害预警系统研究进展及展望[J/OL]. 煤炭学报:1-13[2024-05-31]. https://doi.org/10.13225/j.cnki.jccs.2023.1079. ZHANG Zhigang,ZHANG Qinghua,LIU Jun. Research progress and prospects of coal and gas outburst and composite dynamic disaster warning systems in China[J/OL]. Journal of China Coal Society:1-13[2024-05-31]. https://doi.org/10.13225/j.cnki.jccs.2023.1079.
[3] 王国法,刘峰,庞义辉,等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357. WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
[4] 王海军,曹云,王洪磊. 煤矿智能化关键技术研究与实践[J]. 煤田地质与勘探,2023,51(1):44-54. DOI: 10.12363/issn.1001-1986.22.12.0992 WANG Haijun,CAO Yun,WANG Honglei. Research and practice on key technologies for intelligentization of coal mine[J]. Coal Geology & Exploration,2023,51(1):44-54. DOI: 10.12363/issn.1001-1986.22.12.0992
[5] 王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225-239. WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225-239.
[6] 毛君,杨润坤,谢苗,等. 煤矿智能快速掘进关键技术研究现状及展望[J]. 煤炭学报,2024,49(2):1214-1229. MAO Jun,YANG Runkun,XIE Miao,et al. Research status and prospects of key technologies for intelligent rapid excavation in coal mines[J]. Journal of China Coal Society,2024,49(2):1214-1229.
[7] 高晓亮. 煤矿井下智能化钻探配套钻具研究进展[J]. 煤田地质与勘探,2023,51(10):156-166. DOI: 10.12363/issn.1001-1986.23.04.0214 GAO Xiaoliang. Status and development of intelligent drilling tools for coal mine[J]. Coal Geology & Exploration,2023,51(10):156-166. DOI: 10.12363/issn.1001-1986.23.04.0214
[8] 魏文艳. 综采工作面智能化开采技术发展现状及展望[J]. 煤炭科学技术,2022,50(增刊2):244-253. WEI Wenyan. Development status and prospect of intelligent mining technology of longwall mining[J]. Coal Science and Technology,2022,50(S2):244-253.
[9] 卢振龙,徐刚,尹希文,等. 煤矿智能化顶板矿压预警技术研究[J]. 煤炭工程,2023,55(12):22-27. LU Zhenlong,XU Gang,YIN Xiwen,et al. Early warning technology of coal mine roof pressure based on machine learning[J]. Coal Engineering,2023,55(12):22-27.
[10] 袁亮,吴劲松,杨科. 煤炭安全智能精准开采关键技术与应用[J]. 采矿与安全工程学报,2023,40(5):861-868. YUAN Liang,WU Jingsong,YANG Ke. Key technology and its application of coal safety intelligent precision mining[J]. Journal of Mining & Safety Engineering,2023,40(5):861-868.
[11] 高洪波. 基于应急预案的煤矿应急救援辅助决策系统设计[J]. 工矿自动化,2024,50(2):147-152,160. GAO Hongbo. Design of coal mine emergency rescue auxiliary decision system based on emergency plan[J]. Journal of Mine Automation,2024,50(2):147-152,160.
[12] 刘峰,郭林峰,张建明,等. 煤炭工业数字智能绿色三化协同模式与新质生产力建设路径[J]. 煤炭学报,2024,49(1):1-15. LIU Feng,GUO Linfeng,ZHANG Jianming,et al. Synergistic mode of digitalization-intelligentization-greeniation of the coal industry and it's path of building new coal productivity[J]. Journal of China Coal Society,2024,49(1):1-15.
[13] 王文广. 知识图谱:认知智能理论与实战[M]. 北京:电子工业出版社,2022. WANG Wenguang. Knowledge map : cognitive intelligence theory and practice[M]. Beijing:Publishing House of Electronics Industry,2022.
[14] 张吉祥,张祥森,武长旭,等. 知识图谱构建技术综述[J]. 计算机工程,2022,48(3):23-37. ZHANG Jixiang,ZHANG Xiangsen,WU Changxu,et al. Survey of knowledge graph construction techniques[J]. Computer Engineering,2022,48(3):23-37.
[15] XU Bo,XU Yong,LIANG Jiaqing,et al. CN-DBpedia:a never-ending Chinese knowledge extraction system[C]. International Conference on Industrial,Engineering and Other Applications of Applied Intelligent Systems,Arras,2017:428-438.
[16] NIU Xing,SUN Xinruo,WANG Haofen,et al. Zhishi. me- weaving Chinese linking open data[M]. Heidelberg:Springer,2011.
[17] VRANDEČIĆ D,KRÖTZSCH M. Wikidata[J]. Communications of the ACM,2014,57(10):78-85. DOI: 10.1145/2629489
[18] BOLLACKER K,COOK R,TUFTS P. Freebase:a shared database of structured general human knowledge[C]. AAAI Conference on Artificial Intelligence,Palo Alto,2007:1962-1963.
[19] NICKEL M,TRESP V,KRIEGEL H P. Factorizing YAGO:scalable machine learning for linked data[C]. 21st International Conference on World Wide Web,Lyon ,2012:271-280.
[20] SHANG Yong,TIAN Yu,ZHOU Min,et al. EHR-oriented knowledge graph system:toward efficient utilization of non-used information buried in routine clinical practice[J]. IEEE Journal of Biomedical and Health Informatics,2021,25(7):2463-2475.
[21] 唐晓波,谭明亮,胡潇然,等. 面向金融决策支持的知识获取研究综述[J]. 信息资源管理学报,2020,10(3):27-35. TANG Xiaobo,TAN Mingliang,HU Xiaoran,et al. A review of financial decision-making support-oriented knowledge acquisition[J]. Journal of Information Resources Management,2020,10(3):27-35.
[22] 郑庆华,董博,钱步月,等. 智慧教育研究现状与发展趋势[J]. 计算机研究与发展,2019,56(1):209-224. DOI: 10.7544/issn1000-1239.2019.20180758 ZHENG Qinghua,DONG Bo,QIAN Buyue,et al. The state of the art and future tendency of smart education[J]. Journal of Computer Research and Development,2019,56(1):209-224. DOI: 10.7544/issn1000-1239.2019.20180758
[23] 阮彤,孙程琳,王昊奋,等. 中医药知识图谱构建与应用[J]. 医学信息学杂志,2016,37(4):8-13. DOI: 10.3969/j.issn.1673-6036.2016.04.002 RUAN Tong,SUN Chenglin,WANG Haofen,et al. Construction of traditional Chinese medicine knowledge graph and its application[J]. Journal of Medical Informatics,2016,37(4):8-13. DOI: 10.3969/j.issn.1673-6036.2016.04.002
[24] 陆锋,余丽,仇培元. 论地理知识图谱[J]. 地球信息科学学报,2017,19(6):723-734. DOI: 10.3969/j.issn.1560-8999.2017.06.001 LU Feng,YU Li,QIU Peiyuan. On geographic knowledge graph[J]. Journal of Geo-Information Science,2017,19(6):723-734. DOI: 10.3969/j.issn.1560-8999.2017.06.001
[25] 陈德华,殷苏娜,乐嘉锦,等. 一种面向临床领域时序知识图谱的链接预测模型[J]. 计算机研究与发展,2017,54(12):2687-2697. DOI: 10.7544/issn1000-1239.2017.20170640 CHEN Dehua,YIN Suna,LE Jiajin,et al. A link prediction model for clinical temporal knowledge graph[J]. Journal of Computer Research and Development,2017,54(12):2687-2697. DOI: 10.7544/issn1000-1239.2017.20170640
[26] DENG Cheng,JIA Yuting,XU Hui,et al. GAKG:a multimodal geoscience academic knowledge graph[C]. 30th ACM International Conference on Information & Knowledge Management,Queensland,2021:4445-4454.
[27] ZHU Anjie,OUYANG Deqiang,LIANG Shuang,et al. Step by step:a hierarchical framework for multi-hop knowledge graph reasoning with reinforcement learning[J]. Knowledge-Based Systems,2022,248. DOI: 10.1016/J.KNOSYS.2022.108843.
[28] ZHENG Shangfei,WANG Weiqing,QU Jianfeng,et al. MMKGR:multi-hop multi-modal knowledge graph reasoning[C]. IEEE 39th International Conference on Data Engineering,Anaheim,2023:96-109.
[29] 许娜,梁燕翔,王亮,等. 基于知识图谱的煤矿建设安全领域知识管理研究[J]. 中国安全科学学报,2024,34(5):28-35. XU Na,LIANG Yanxiang,WANG Liang,et al. Research on knowledge management in coal mine construction safety field based on knowledge graph[J]. China Safety Science Journal,2024,34(5):28-35.
[30] 罗香玉,杜浩,华颖,等. 一种煤矿顶板灾害防治知识图谱构建方法[J]. 工矿自动化,2024,50(6):54-60. LUO Xiangyu,DU Hao,HUA Ying,et al. A method for constructing a knowledge graph of coal mine roof disaster prevention and control[J]. Journal of Mine Automation,2024,50(6):54-60.
[31] 刘鹏,叶帅,舒雅,等. 煤矿安全知识图谱构建及智能查询方法研究[J]. 中文信息学报,2020,34(11):49-59. DOI: 10.3969/j.issn.1003-0077.2020.11.007 LIU Peng,YE Shuai,SHU Ya,et al. Coalmine safety:knowledge graph construction and its QA approach[J]. Journal of Chinese Information Processing,2020,34(11):49-59. DOI: 10.3969/j.issn.1003-0077.2020.11.007
[32] 刘永立,王海涛. 基于知识图谱的火灾及耦合灾害应急处置管理[J]. 煤矿安全,2022,53(9):144-150. LIU Yongli,WANG Haitao. Fire and coupling disaster emergency management based on mapping knowledge domain[J]. Safety in Coal Mines,2022,53(9):144-150.
[33] 吴克介. 煤矿安全监控系统领域知识图谱构建及应用研究[J]. 煤炭技术,2024,43(4):238-242. WU Kejie. Research on construction and application of domain knowledge map of coal mine safety monitoring system[J]. Coal Technology,2024,43(4):238-242.
[34] 李哲,周斌,李文慧,等. 煤矿机电设备事故知识图谱构建及应用[J]. 工矿自动化,2022,48(1):109-112. LI Zhe,ZHOU Bin,LI Wenhui,et al. Construction and application of mine electromechanical equipment accident knowledge graph[J]. Industry and Mine Automation,2022,48(1):109-112.
[35] 韩一搏,董立红,叶鸥. 基于联合编码的煤矿综采设备知识图谱构建[J]. 工矿自动化,2024,50(4):84-93. HAN Yibo,DONG Lihong,YE Ou. Construction of knowledge graph for fully mechanized coal mining equipment based on joint coding[J]. Journal of Mine Automation,2024,50(4):84-93.
[36] 冯银辉,秦泽宇. 基于综采集控平台的智能辅助决策系统研究[J]. 煤炭技术,2023,42(1):241-245. FENG Yinhui,QIN Zeyu. Research on intelligent auxiliary decision system based on fully mechanized mining control platform[J]. Coal Technology,2023,42(1):241-245.
[37] YANG Dongying,LIAN Tao,ZHENG Wen,et al. Enriching word information representation for Chinese cybersecurity named entity recognition[J]. Neural Processing Letters,2023,55(6):7689-7707. DOI: 10.1007/s11063-023-11280-7
[38] 宁尚明,滕飞,李天瑞. 基于多通道自注意力机制的电子病历实体关系抽取[J]. 计算机学报,2020,43(5):916-929. DOI: 10.11897/SP.J.1016.2020.00916 NING Shangming,TENG Fei,LI Tianrui. Multi-channel self-attention mechanism for relation extraction in clinical records[J]. Chinese Journal of Computers,2020,43(5):916-929. DOI: 10.11897/SP.J.1016.2020.00916
[39] 鄂海红,张文静,肖思琪,等. 深度学习实体关系抽取研究综述[J]. 软件学报,2019,30(6):1793-1818. E Haihong,ZHANG Wenjing,XIAO Siqi,et al. Survey of entity relationship extraction based on deep learning[J]. Journal of Software,2019,30(6):1793-1818.
[40] ZHENG Suncong,WANG Feng,BAO Hongyun,et al. Joint extraction of entities and relations based on a novel tagging scheme[C]. 55th Annual Meeting of the Association for Computational Linguistics,Vancouver,2017:1227-1236.
[41] 官赛萍,靳小龙,贾岩涛,等. 面向知识图谱的知识推理研究进展[J]. 软件学报,2018,29(10):2966-2994. GUAN Saiping,JIN Xiaolong,JIA Yantao,et al. Knowledge reasoning over knowledge graph:a survey[J]. Journal of Software,2018,29(10):2966-2994.
[42] 丁百川. 我国煤矿主要灾害事故特点及防治对策[J]. 煤炭科学技术,2017,45(5):109-114. DING Baichuan. Features and prevention countermeasures of major disasters occurred in China coal mine[J]. Coal Science and Technology,2017,45(5):109-114.
[43] 杨梦,周恩波. 煤矿智能应急预案生成系统设计与关键技术[J]. 煤矿安全,2018,49(7):96-98. YANG Meng,ZHOU Enbo. Design and key technologies for coal mine intelligent emergency plan generation system[J]. Safety in Coal Mines,2018,49(7):96-98.
-
期刊类型引用(1)
1. 邓飞. 煤矿安全监控系统研究现状与展望. 矿业安全与环保. 2025(01): 14-19+29 . 百度学术
其他类型引用(0)