High-precision 3D point cloud modeling method for coal mine roadways based on known point constraints
-
摘要:
面对煤矿井下低照度、弱纹理、高粉尘等复杂条件,现有煤矿巷道三维建模方法存在成本高、时效性差和精度低等问题,提出了一种基于已知点约束的高精度煤矿巷道三维点云建模方法。首先,通过体素滤波器对激光雷达点云数据进行降采样,并对降采样后的激光雷达点云数据利用迭代最近点(ICP)匹配提取出局部点云地图,结合惯性测量单元(IMU)数据对点云数据进行畸变校正;其次,利用ICP配准局部点云地图和畸变校正后的点云地图,以提高前端配准的精度和效率,并在后端加入回环检测来提高煤矿巷道定位与建图精度;然后,通过附合导线控制测量获取煤矿巷道分段已知点坐标,为点云建模提供全局约束条件;最后,将已知点和激光雷达同时定位与建图(SLAM)确定的测站点进行联合平差计算,对测站点坐标进行校正,并进一步利用非线性优化方法校正全局点云地图坐标,从而提高三维点云建模精度。实验结果表明:该方法构建的煤矿巷道三维点云地图具有较好的全局一致性和几何结构真实性,在煤矿井下具有较高的定位与建图精度。
Abstract:In response to the complex conditions such as poor lighting, weak texture, and high concentrtaions of dust in underground coal mines, the existing 3D modeling methods for coal mine roadways have the disadvantages of high costs, poor timeliness, and low accuracy. A high-precision 3D point cloud modeling method for coal mine roadways based on known point constraints was proposed. The LiDAR point cloud data was downsampled by voxel filter, followed by the use of iterative closest point (ICP) matching for the downsampled LiDAR point cloud data to extract local point cloud maps. The point cloud data was then distortion-corrected using inertial measurement unit (IMU) data. ICP was utilized to align the local point cloud maps with the distortion-corrected point cloud maps, improving the accuracy and efficiency of front-end registration. Loopback detection was incorporated in the back-end to enhance the accuracy of coal mine roadway localization and mapping. The coordinates of the known points of the coal mine roadways were obtained through control measurements using connecting traverse, providing global constraints for point cloud modeling. A combined adjustment calculation was performed on the known points and the station points determined by LiDAR simultaneous localization and mapping (SLAM). The station point coordinates were corrected, and a nonlinear optimization method was further employed to adjust the global point cloud map coordinates, thereby improving the accuracy of 3D point cloud modeling. Experimental results demonstrated that the 3D point cloud map of coal mine roadways constructed by this method had high global consistency and geometric structure authenticity, achieving high localization and mapping accuracy in underground coal mines.
-
-
表 1 不同方法的定位误差
Table 1 Localization errors of different methods
方法 误差类别 最大误差/m 最小误差/m 平均误差/m 相对误差/% LeGO−
LOAM水平误差 9.253 0.025 0.708 3.86 竖直误差 7.933 0.032 1.684 3.31 LIO−
SAM水平误差 3.314 0.021 1.475 1.38 竖直误差 2.417 0.024 0.582 1.01 本文
方法水平误差 0.426 0.023 0.199 0.18 竖直误差 1.044 0.026 0.455 0.45 表 2 不同方法对应的特征地物尺寸测量误差对比
Table 2 Comparison of dimension measurement errors of feature objects using different methods
方法 特征地物 真实长度/m 测量长度/m 绝对误差/m 相对误差/% LeGO−
LOAM1 4.600 4.356 0.244 5.30 2 2.000 1.916 0.084 4.20 3 0.600 0.585 0.015 2.50 4 3.500 3.663 0.163 4.66 5 0.900 0.923 0.023 2.56 6 1.500 1.482 0.018 1.20 LIO−
SAM1 4.600 4.562 0.038 0.83 2 2.000 1.986 0.014 0.70 3 0.600 0.595 0.005 0.83 4 3.500 3.533 0.033 0.94 5 0.900 0.862 0.038 4.22 6 1.500 1.490 0.010 0.67 本文
方法1 4.600 4.582 0.018 0.39 2 2.000 1.991 0.009 0.45 3 0.600 0.595 0.005 0.83 4 3.500 3.487 0.013 0.37 5 0.900 0.893 0.007 0.78 6 1.500 1.493 0.007 0.47 -
[1] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41. WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
[2] 高毅楠,姚顽强,蔺小虎,等. 煤矿井下多重约束的视觉SLAM关键帧选取方法[J]. 煤炭学报,2024,49(增刊1):472-482. GAO Yinan,YAO Wanqiang,LIN Xiaohu,et al. Visual SLAM keyframe selection method with multiple constraints in underground coal mines[J]. Journal of China Coal Society,2024,49(S1):472-482.
[3] 徐志强,杨邦荣,王李管,等. 巷道实体的三维建模研究与实现[J]. 计算机工程与应用,2008,44(6):202-205. DOI: 10.3778/j.issn.1002-8331.2008.06.061 XU Zhiqiang,YANG Bangrong,WANG Liguan,et al. Laneway entity three-dimensional modeling study and realization[J]. Computer Engineering and Applications,2008,44(6):202-205. DOI: 10.3778/j.issn.1002-8331.2008.06.061
[4] 刘杰,连增增,何荣,等. 基于近景摄影测量技术的地下巷道三维建模[J]. 金属矿山,2020(9):179-183. LIU Jie,LIAN Zengzeng,HE Rong,et al. 3D modeling of underground tunnel based on close range photogrammetry technique[J]. Metal Mine,2020(9):179-183.
[5] 汪云甲,伏永明. 矿井巷道三维自动建模方法研究[J]. 武汉大学学报(信息科学版),2006,31(12):1097-1100. DOI: 10.3969/j.issn.1671-8860.2006.12.016 WANG Yunjia,FU Yongming. On 3D automatic modeling method of mine roadway[J]. Geomatics and Information Science of Wuhan University,2006,31(12):1097-1100. DOI: 10.3969/j.issn.1671-8860.2006.12.016
[6] 徐海,罗周全,刘晓明. 复杂巷道工程三维可视化建模方法研究及应用[J]. 矿冶工程,2011,31(1):19-23. DOI: 10.3969/j.issn.0253-6099.2011.01.006 XU Hai,LUO Zhouquan,LIU Xiaoming. Study of 3D visualization modeling methods for complex roadway engineering and its application[J]. Mining and Metallurgical Engineering,2011,31(1):19-23. DOI: 10.3969/j.issn.0253-6099.2011.01.006
[7] 杨林,马宏伟,王岩. 基于激光惯性融合的煤矿井下移动机器人SLAM算法[J]. 煤炭学报,2022,47(9):3523-3534. YANG Lin,MA Hongwei,WANG Yan. LiDAR-Inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523-3534.
[8] 董志华,姚顽强,蔺小虎,等. 煤矿井下顾及特征点动态提取的激光SLAM算法研究[J]. 煤矿安全,2023,54(8):241-246. DONG Zhihua,YAO Wanqiang,LIN Xiaohu,et al. LiDAR SLAM algorithm considering dynamic extraction of feature points in underground coal mine[J]. Safety in Coal Mines,2023,54(8):241-246.
[9] 李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68-78. LI Menggang,HU Eryi,ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot[J]. Journal of Mine Automation,2022,48(12):68-78.
[10] 马艾强,姚顽强,蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J]. 工矿自动化,2022,48(12):49-56. MA Aiqiang,YAO Wanqiang,LIN Xiaohu,et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56.
[11] KIM H,CHOI Y. Location estimation of autonomous driving robot and 3D tunnel mapping in underground mines using pattern matched LiDAR sequential images[J]. International Journal of Mining Science and Technology,2021,31(5):779-788. DOI: 10.1016/j.ijmst.2021.07.007
[12] 刘敬娜,徐华龙,徐正国,等. 智慧矿山工业广场三维自动建模技术研究[J]. 时空信息学报,2024,31(4):524-532. LIU Jingna,XU Hualong,XU Zhengguo,et al. 3D automatic modeling technology for smart mining industrial square[J]. Journal of Spatio-Temporal Information,2024,31(4):524-532.
[13] WANG Jiaheng,WANG Liguan,PENG Pingan,et al. Efficient and accurate mapping method of underground metal mines using mobile mining equipment and solid-state lidar[J]. Measurement,2023,221. DOI: 10.1016/j.measurement.2023.113581.
[14] 刘少杰,李志海,刘治翔,等. 基于激光扫描和三维栅格地图的掘进巷道空间建模方法研究[J]. 工程设计学报,2023,30(3):306-314. DOI: 10.3785/j.issn.1006-754X.2023.00.034 LIU Shaojie,LI Zhihai,LIU Zhixiang,et al. Research on spatial modeling method for excavation tunnels based on laser scanning and 3D grid map[J]. Chinese Journal of Engineering Design,2023,30(3):306-314. DOI: 10.3785/j.issn.1006-754X.2023.00.034
[15] 江记洲,郭甲腾,吴立新,等. 基于三维激光扫描点云的矿山巷道三维建模方法研究[J]. 煤矿开采,2016(2):109-113. JIANG Jizhou,GUO Jiateng,WU Lixin,et al. 3-D modeling method of mine roadway based on 3-D laser scanning point cloud[J]. Coal Mining Technology,2016(2):109-113.
[16] GURGEL M J M,PREUSSE A. New opportunities and challenges in surveying underground cavities using photogrammetric methods[J]. International Journal of Mining Science and Technology,2021,31(1):9-13. DOI: 10.1016/j.ijmst.2020.12.005
[17] BESL P J,MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256. DOI: 10.1109/34.121791
[18] KIM G,KIM A. Scan context:egocentric spatial descriptor for place recognition within 3D point cloud map[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018:4802-4809.
[19] 张继贤,肖雨彤. 仙泉煤矿井下导线网设计与测量成果分析[J]. 煤炭工程,2019,51(5):163-167. ZHANG Jixian,XIAO Yutong. Underground traverse network design and analysis of measurement results in Xianquan Coal Mine[J]. Coal Engineering,2019,51(5):163-167.
[20] SHAN Tixiao,ENGLOT B. LeGO-LOAM:lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018:4758-4765.
[21] SHAN Tixiao,ENGLOT B,MEYERS D,et al. LIO-SAM:tightly-coupled lidar inertial odometry via smoothing and mapping[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas,2020:5135-5142.
-
期刊类型引用(1)
1. 韩晓冰,王鑫磊,周远国,刘洋. 基于DNN的煤矿富水区探测反演方法研究. 煤炭技术. 2024(04): 140-145 . 百度学术
其他类型引用(3)