Coal mine roadway base station site selection method based on ray-tracing path loss model
-
摘要:
煤矿巷道狭长且多分支的结构特征导致5G信号难以实现全面覆盖,巷道内的高路径损耗导致无线信号传输受限,因此需要对煤矿巷道基站进行选址规划。现有方法大多通过最大化视距区域的覆盖范围实现基站选址,忽略了非视距区域的基站选址问题。针对该问题,提出了一种基于射线追踪路径损耗模型的煤矿巷道基站选址方法。基于射线追踪路径损耗模型确定矩形断面巷道中基站的覆盖半径;构建了巷道数字高程模型,在此基础上确定了基站位置优化问题的目标函数,通过最小化基站数量和位置优化达到最佳覆盖率;采用遗传算法对基站位置进行优化选择,从而确定基站最优位置。仿真结果表明,使用14个基站的选址方案时,网络覆盖率为91.2%,与数值计算结果的误差仅为2.4%。煤矿巷道实测结果表明,信号接收功率略低于模拟结果,−80 dBm的信号强度可提供200 m的覆盖半径,验证了射线追踪路径损耗模型的有效性。
Abstract:The narrow and branched structure of coal mine roadways makes it difficult for 5G signals to achieve full coverage, and the high path loss within the roadways limits wireless signal transmission. Therefore, site selection planning for coal mine roadway base stations is necessary. Existing methods typically focus on maximizing the coverage of visual range, neglecting the site selection problem in non-visual range. To address this issue, a coal mine roadway base station site selection method based on the ray-tracing path loss model is proposed. The coverage radius of base stations in rectangular cross-section roadways was determined using the ray-tracing path loss model. A digital elevation model of the roadway was constructed, and based on this, the objective function for base station location optimization was defined. The optimal coverage rate was achieved by minimizing the number of base stations and optimizing their locations. A genetic algorithm was employed to optimize the base station locations, thereby determining the optimal positions. Simulation results showed that with a site selection plan using 14 base stations, the network coverage rate was 91.2%, with an error of only 2.4% compared to numerical calculation results. Field measurement results in the coal mine roadway showed that the received signal power was slightly lower than the simulated results, but a signal strength of −80 dBm provided a coverage radius of 200 m, validating the effectiveness of the ray-tracing path loss model.
-
-
表 1 13个基站的位置信息,覆盖率86.0%
Table 1 Location information of 13 base stations with a coverage of 86.0%
m 序号 基站坐标(x, y) 序号 基站坐标(x, y) 1 79,346 8 454,463 2 247,129 9 858,463 3 578,196 10 276,632 4 451,213 11 738,643(302) 5 810,212 12 473,642(122) 6 247,442 13 813,632 7 578,451 表 2 14个基站的位置信息,覆盖率91.2%
Table 2 Location information of 14 base stations with a coverage rate of 91.2%
m 序号 基站坐标(x, y) 序号 基站坐标(x, y) 1 68,326 8 376,462 2 247,145 9 804,462 3 580,140 10 90,641(200) 4 413,212 11 215,632 5 843,212 12 461,642(113) 6 247,436 13 780,632 7 578,427 14 724,642(292) 表 3 15个基站的位置信息,覆盖率94.4%
Table 3 Location information of 15 base stations with a coverage rate of 94.4%
m 序号 基站坐标(x, y) 序号 基站坐标(x, y) 1 53,300 9 836,462 2 248,203 10 90,644(200) 3 578,179 11 218,635 4 448,212 12 493,642(135) 5 827,213 13 618,633 6 246,431 14 736,643(300) 7 576,387 15 782,518 8 369,463 -
[1] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36. WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
[2] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23. WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
[3] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7. SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
[4] 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163. LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163.
[5] BOUTIN M,AFFES S,DESPINS C,et al. On the modelling of a radio propagation channel for LOS and NLOS areas in a mine tunnel[C]. First International Workshop on Wireless Communications in Underground and Confined Areas,Quebec,2005.
[6] SUN Zhi,AKYILDIZ I. Channel modeling and analysis for wireless networks in underground mines and road tunnels[J]. IEEE Transactions on Communications,2010,58(6):1758-1768. DOI: 10.1109/TCOMM.2010.06.080353
[7] ZHOU Chenming,WAYNERT J,PLASS T,et al. Attenuation constants of radio waves in lossy-walled rectangular waveguides[J]. Progress in Electromagnetics Research,2013,142:75-105. DOI: 10.2528/PIER13061709
[8] 张跃平,张文梅,盛剑桓,等. 900 MHz无线电波在地下长壁煤矿的传播[J]. 煤炭学报,2002,27(1):83-87. DOI: 10.3321/j.issn:0253-9993.2002.01.018 ZHANG Yueping,ZHANG Wenmei,SHENG Jianhuan,et al. Radio propagation at 900 MHz in underground coal mines[J]. Journal of China Coal Society,2002,27(1):83-87. DOI: 10.3321/j.issn:0253-9993.2002.01.018
[9] HOYDIS J,AOUDIA F A,CAMMERER S,et al. Sionna RT:differentiable ray tracing for radio propagation modeling[C]. IEEE Globecom Workshops,Kuala Lumpur,2023: 317-321.
[10] 顾晓龙,章文勋,云正清,等. 利用可见性概念改进基于镜像原理的射线追踪法[J]. 电波科学学报,2001,16(4):464-467. DOI: 10.3969/j.issn.1005-0388.2001.04.010 GU Xiaolong,ZHANG Wenxun,YUN Zhengqing,et al. Improved ray-tracing technique with image approach based on visibility between objects[J]. Chinese Journal of Radio Science,2001,16(4):464-467. DOI: 10.3969/j.issn.1005-0388.2001.04.010
[11] YUN Zhengqing,ISKANDER M F. Ray tracing for radio propagation modeling:principles and applications[J]. IEEE Access,2015,3:1089-1100. DOI: 10.1109/ACCESS.2015.2453991
[12] DE GREVE B. Reflections and refractions in ray tracing[EB/OL]. [2024-07-05]. https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf.
[13] HOCHBAUM D S. Approximation algorithms for NP-hard problems[J]. ACM SIGACT News,1997,28(2):40-52. DOI: 10.1145/261342.571216
[14] KIM M,PARK J,KIM J. Learning collaborative policies to solve NP-hard routing problems[EB/OL]. [2024-07-05]. https://arxiv.org/abs/2110.13987.
[15] PAULUS A,ROLÍNEK M,MUSIL V,et al. CombOptNet:fit the right NP-hard problem by learning integer programming constraints[EB/OL]. [2024-07-05]. https://arxiv.org/abs/2105.02343?context=cs.
[16] MURRAY A T,CHURCH R L. Applying simulated annealing to location-planning models[J]. Journal of Heuristics,1996,2(1):31-53. DOI: 10.1007/BF00226292
[17] ATTA S,SINHA MAHAPATRA P R,MUKHOPADHYAY A. Solving maximal covering location problem using genetic algorithm with local refinement[J]. Soft Computing,2018,22(12):3891-3906. DOI: 10.1007/s00500-017-2598-3
[18] DE ASSIS CORRÊA F,CHAVES A A,LORENA L A N. Hybrid heuristics for the probabilistic maximal covering location-allocation problem[J]. Operational Research,2007,7(3):323-343. DOI: 10.1007/BF03024852
[19] PALIZBAN N,SZYSZKOWICZ S,YANIKOMEROGLU H. Automation of millimeter wave network planning for outdoor coverage in dense urban areas using wall-mounted base stations[J]. IEEE Wireless Communications Letters,2017,6(2):206-209. DOI: 10.1109/LWC.2017.2659732
[20] SZYSZKOWICZ S S,LOU A,YANIKOMEROGLU H. Automated placement of individual millimeter-wave wall-mounted base stations for line-of-sight coverage of outdoor urban areas[J]. IEEE Wireless Communications Letters,2016,5(3):316-319. DOI: 10.1109/LWC.2016.2552168
[21] MAVROMATIS I,TASSI A,PIECHOCKI R J,et al. Efficient millimeter-wave infrastructure placement for city-scale ITS[EB/OL]. [2024-07-05]. https://arxiv.org/abs/1903.01372v1.
[22] DONG Miaomiao,KIM T,WU Jingjin,et al. Cost-efficient millimeter wave base station deployment in Manhattan-type geometry[J]. IEEE Access,2019,7:149959-149970. DOI: 10.1109/ACCESS.2019.2947637
[23] 吕春英,佟庆远,李王锋,等. 数字高程模型(DEM)的构建及其在城市规划中的应用[C]. 中国科学技术协会年会,北京,2006:392-396. LYU Chunying,TONG Qingyuan,LI Wangfeng,et al. Construction of digital elevation model (DEM) and its application in urban planning[C]. Annual Meeting of China Association for Science and Technology,Beijing,2006:392-396.
-
期刊类型引用(0)
其他类型引用(3)